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Global Abstract

Obesity is a serious public health crisis and recent estimates of its incidence are the
highest in United States history, with 35% and 17% of American adults and children
affected, respectively. The clinical definition of adult obesity is operationalized as a body
mass index (BMI) greater than 30 kg/m”. Although the prevalence of common obesity
has increased dramatically over the past 30 years—largely thought to be due to changes in
the environment, such as high calorie diets and sedentary lifestyles—twin and family
studies have shown consistently that relative body weight is under considerable genetic
influence in both children and adults, with heritability estimates ranging from 40% to
90%. Elucidating the genetic and environmental liability to relative body weight is an
important public health endeavor. To further our understanding of the genetics of BMI
and common complex obesity, several studies are described that integrate clinical, twin,
and genome-wide association (GWAS) methodology in the context of genetic risk scores,
clinical risk prediction, development across adolescence into adulthood, and comorbidity
with depression symptoms and smoking behavior. First, in two cross-sectional genetic
association studies, the utility of genetic risk sum scores (GRSS) were assessed, which
summarize the total number of risk alleles, as an alternative form of replication and for
potential clinical utility for obesity risk prediction. Next, since there has been only
limited research on when during development BMI-associated variants begin influencing
BMLI, a longitudinal twin study was utilized to assess the effects of adult-validated BMI-
SNPs across adolescence into adulthood. In addition, obesity is comorbid with numerous
medical conditions including cardiovascular disease, insulin-resistance and some forms
of cancer, as well as, various psychiatric disorders including eating disorders, mood
disorders, and substance use. The next series of studies aimed to understand phenotypic
and genetic associations between BMI/obesity and binge eating disorder (BED),
depression symptoms and smoking behavior. Using a clinical sample of overweight and
obese women with and without BED, the relationship of BED, food intake and
internalizing symptoms of depression and anxiety was examined. Next, twin study
methodology was used to investigate if shared genetic and/or environmental liability was
responsible for phenotypic associations found between BMI, depression symptoms, and
impulsivity. Finally, a genetic association study aimed at investigating whether genetic
variants were associated with multiple behaviors, body composition and smoking
behavior, or were trait-specific is presented. By utilizing several samples and
methodologies and by pursuing methods development, a comprehensive approach is
presented that is hoped to represent a more powerful evidence-based strategy to
understanding the genetic and environmental determinants of BMI and common complex
obesity, along with associated depression symptoms and smoking behavior.
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Chapter 1: General Introduction

THE OBESITY EPIDEMIC
Prevalence

Obesity is a growing public health crisis that is increasingly global in scope (1). Its
prevalence among adult Americans has increased dramatically over the last fifty years.
As reported by the Centers for Disease Control and Prevention, obesity rates increased
from 5% in 1959 to 15% in 1980, and recent estimates of 35% in 2010 are the highest in
United States history (2). These estimates reflect a five-fold increase in obesity since
1959. Similarly, rates of obesity in childhood have increased significantly over the past
30 years, from 5% in 1980 to 17% in 2010 (2). Furthermore, the US is not alone in this
epidemic, as the World Health Organization reports similar child and adult obesity trends
for many other nations (1).

Defining obesity

Obesity is defined as an excess of body adiposity. Historically, body weight has been
used as a proxy measure of adiposity. Until the 1970s, obesity was defined on the basis of
reference tables of “ideal body weight” determined by the life insurance industry from
associations with mortality (1). However, this was replaced in the 1980s by body mass
index (BMI), a height-adjusted measure of weight calculated as the ratio of weight in
kilograms by height in meters squared (kg/m?”). The current clinical definition of adult
obesity is a BMI greater than 30 kg/m”. BMI may be further partitioned into clinical
categories corresponding to BMI ranges of underweight <18, normal 18-25, overweight
25-30 and obese class I 30-35, class II 35-40, and class III 40+ kg/m” (US Dietary
Guidelines). In children, the criteria for classification as overweight and obese are based
on the 85™ and 95" percentiles of BMI for sex and age in relation to a reference
population (3). Additionally, research has demonstrated that BMI is correlated with other,
more direct measures of body fat including underwater weighing and dual energy X-ray
absorptiometry (DEXA) (4-6). However, the limitations of BMI have been realized and
factors such as age, sex, ethnicity, and muscle mass can affect the association between
BMI and body fat (7-10). BMI nonetheless remains a widely used, simple, inexpensive,
and noninvasive proxy measure of body fat that can be calculated with reasonable
accuracy.

Mortality and morbidity

With increasing BMI there is a curvilinear rise in mortality (11, 12). In obese groups, this
rise in mortality is thought to be due to the numerous adverse medical conditions

associated with high levels of body fat. In adults, obesity is associated with increased risk
of cardiovascular disease (13), type II diabetes (14, 15), some forms of cancer (16) and is

1
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comorbid with multiple psychiatric disorders (17-21). Similarly, childhood obesity is
associated with both immediate and long-term health consequences including increases in
blood pressure, cholesterol and insulin resistance, as well as social and psychological
problems (22-25). Furthermore, research has demonstrated that obese children are more
likely to become obese adults (26-30), adding to the necessity of effective prevention and
treatment efforts.

Determinants of obesity

Obesity is the result of positive energy balance, that is, excess caloric intake relative to
energy expenditure. Although energy balance may appear straightforward, its relationship
with obesity is complex and involves both genetic and environmental determinants. With
respect to the doubling of obesity rates in the past 30 years, it is arguable that while our
genomes have remained stable, environmental changes are attributable to this rise.
Examples of such environmental factors include increases in restaurant and fast-food
dining, and consumption of sweetened beverages (12, 31). For example, the reported
number of fast food restaurants has increased from an estimated 600 in 1958 to over
222,000 in 2010 (1). Additionally, data on energy expenditure suggest that physical
activity has declined but that the magnitude of this change is small and could not alone
account for the dramatic increase in rates of obesity (32). Tracking of energy intake and
expenditure is difficult and complicated by inaccuracies in reporting (33). Further
research and developments in methodology are needed to clarify the relative contribution
of dietary intake and energy expenditure to obesity over the life course. Although
nutritional intake and physical activity affect relative body weight, twin and family
studies have consistently shown a significant genetic contribution to body composition
with heritability estimates of 40 to 70% (34-36). These results suggest that a considerable
fraction of the variance in BMI is due to genetic effects. Therefore, the obesity epidemic
likely reflects multiple interactions between lifestyle and genetic factors. More research is
needed to unravel the interactions between these factors, and especially, identify critical
time points of susceptibility.

THE GENETICS OF OBESITY

Three broad categories of obesity etiology have been described: monogenic, syndromic
and common complex obesity. Dysfunction or loss of a single or few genes is both
necessary and sufficient to cause monogenic or syndromic obesity and the typical onset is
early in childhood. Common complex obesity is thought to be the result of the interplay
between many genes, each of relatively small effect, along with influences of the
environment. Research suggests that less than 5% of obesity cases are caused by
monogenic or syndromic inheritance (37). Given that our focus herein is on common
complex obesity, only a brief review of monogenic and syndromic obesity are provided.
More detailed descriptions of rarer forms of obesity may be found in Mutch & Clement,
Hinney et al., and Beales (38-40), as well as in the Online Mendelian Inheritance in Man
database (http://www.ncbi.nlm.nih.gov/omim).

2
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Monogenic obesity

Monogenic obesity, also known as non-syndromic obesity, is defined as obesity caused
from a rare mutation of a single gene. There have been over 200 reported cases of
monogenic obesity, implicating a total of 11 genes (38, 40). The most common mutations
causing monogenic obesity are in the melanocortin-4-receptor gene (MC4R) on
chromosome 18q22 and account for 6% of monogenic obesity (41, 42). Association with
MC4R in humans was first reported in 1998 after screening of extremely obese
individuals and their families identified frameshift mutations co-segregating in an
autosomal dominant fashion (43, 44). The leptin receptor gene (LEPR) on chromosome
1p31 has been found to account for 3% of monogenic obesity cases (45) and yielded its
first reported association in humans in 1998 following the presentation of severely obese
siblings with extremely high levels of serum leptin (46). In fact, many of the transcripts
of genes associated with monogenic obesity have been shown to have a role in the
hypothalamic leptin-melanocortin system, which include the following genes: /eptin
(LEP), pro-opiomelanocortin (POMC), prohormone convertase 1 (PC1), brain-derived
neurotrophic factor (BDNF) and its receptor neurotrophic tyrosine kinase receptor type 2
(NTRK?2) and single-minded homolog 1 (SIM1) (37, 38, 40, 47-50) .

Syndromic obesity

There are approximately 30 Mendelian disorders that include obesity as a clinical feature
but are distinguished by additional presenting attributes including intellectual disabilities,
dysmorphic features and developmental abnormalities (38, 40, 49, 50). These disorders
are termed syndromic obesity and are the consequence of specific genetic defects or
chromosomal abnormalities that disrupt contiguous gene(s). Because multiple genes may
be disrupted, the particular causes of obesity often remain elusive. The most common
forms of syndromic obesity disorders identified to date are Prader-Willi syndrome
(PWS), Bardet-Biedl syndrome, and Alstrom syndrome. Of these, PWS has the greatest
incidence, occurring in 1 in 25,000 births and, in addition to obesity, is characterized by
hyperphagia, intellectual disabilities, and hypogonadism. Most cases of PWS are caused
by deletion of the paternal copy of the imprinted small nuclear ribonucleoprotein
polypeptide N gene (SNRPN) and potentially other genes within the 15q11-q13 region.
The full catalogue of syndromes may be found in the Online Mendelian Inheritance in
Man database (http://www.ncbi.nlm.nih.gov/omim).

Polygenic inheritance

Although the prevalence of common obesity has increased dramatically over the past 30
years—largely thought to be due to changes in the environment, such as high calorie diets
and sedentary lifestyles—twin and family studies have shown consistently that relative
body weight is under considerable genetic influence in both children and adults, with
heritability estimates ranging from 40% to 90% (35, 51-54). Additionally, twin study
meta-analyses which examined BMI from birth to adulthood have revealed that the
contribution of genetic effects are low at birth but increase over time, with upwards of
50% of the phenotypic variance due to genetic effects after the first year of life (54, 55).
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Furthermore, twin studies have demonstrated significant sex effects on BMI, with greater
phenotypic variance in females and significant sex-specific genetic factors also reported
(51, 54, 56-60). Given the large heritability estimates reported for BMI, molecular
genetic approaches represent a useful tool with which to examine underlying mechanisms
and genetic susceptibility to obesity. To date, a number of approaches have been utilized
to identify BMI/obesity-associated genes including candidate gene, linkage and
association studies.

Studies of candidate genes known to cause severe obesity in experimental animals
have implicated several genes in human obesity (40). In the mid-1990s, Zhang et al.,
discovered that a mutation in the gene encoding the leptin protein was responsible for the
severe obesity phenotype in the ob/ob mouse (61). Shortly thereafter, the first human
mutations were reported in a pair of severely obese cousins, who were found to carry a
frameshift mutation in the LEP gene on chromosome 7q32 (62). Mutations in the LEP
gene are largely associated with monogenic obesity and ~1% of extreme early onset
obesity cases carry LEP mutations (40). However, variants in LEP have not demonstrated
association with BMI in the general population (63). Although hundreds of genes have
been proposed as obesity candidate genes, few have yielded convincing association
findings for BMI liability or obesity susceptibility and include common variants in MC4R
and BDNF (63-67).

Genome-wide linkage studies provided an alternative method for identifying
BMI/obesity-susceptibility genes. By examining rates of recombination between
polymorphic markers among affected siblings, linkage analysis has the potential to
localize a co-segregating genetic effect to a particular genetic locus. Unlike candidate
gene studies, linkage studies do not rely on an a priori hypothesis, but rather aim to
identify previously unknown genetic loci to potentially lead to new insights regarding the
biology. Numerous linkage scans have been performed, identifying more than 300
chromosomal loci demonstrating linkage with BMI/obesity (48, 68). However, like
candidate gene approaches, linkage studies have been plagued by non-replication of
positive findings (68, 69). For instance, a meta-analysis of 37 studies boasting a
combined sample size of 10,000 families failed to identify any locus robustly linked to
BMI or obesity (68). As such, linkage analysis has not proved to be a powerful method
for identifying genetic loci with small effects, as would be expected for BMI and
common complex obesity.

By the mid-2000s, the fruits of the Human Genome Project and International
HapMap Project (70), coupled with the rapid development of high-density high-
throughput genotyping arrays, set the stage for a new era of complex disease mapping by
genome-wide association studies (GWAS). GWAS is premised on the expectation that,
by capturing the majority of common human variation across the genome, individual
associations might be identified without a priori expectation of a given locus’s
involvement in disease etiology. Common variation, in the context of GWAS, is taken
commonly to mean point mutations, or single nucleotide polymorphisms (SNPs) with
minor allele frequencies (MAF) >1-5%. An advantage of GWAS over linkage studies is
its extendibility to population-based designs, allowing for potentially larger sample sizes
and increased power to detect variants with smaller effect-sizes (71). The GWAS
approach has successfully identified polymorphisms that contribute to disease risk for
numerous complex traits and diseases (72). Though, in some ways the field of obesity
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stumbled into the GWAS era. In 2007, a GWAS of type II diabetes by the Welcome Trust
Case Control Consortium identified the first association with BMI. A SNP in the fat mass
and obesity-associated (FTO) gene was found to be significantly associated with type 11
diabetes. However, when the analyses were adjusted for BMI, the strength of this
association was diminished, indicating that the effect of F70 on type Il diabetes was
through its association with BMI. Since 2007, several subsequent GWAS of successively
larger size have been performed for BMI and obesity-related traits (67). In 2009, two
large-scale BMI meta-analyses by Thorleifsson et al. and Willer ef al. yielded 13 genetic
loci reaching genome-wide significance, including the previously implicated variants in
or near FTO and MC4R (see Chapter 2 for a complete list). A subsequent mega-analysis
by Speliotes ef al. (2010) incorporated a two-stage approach in which a GWAS was
performed on 249,796 individuals from 46 studies in the first stage, followed by a second
stage in which association was performed in an additional 125,931 individuals from 42
studies. This study confirmed 32 SNPs unequivocally associated with BMI (see Chapter
3 for a complete list). These variants, although highly associated with BMI, have small
individual effects ranging 0.06 to 0.39 kg/m? change in BMI per risk allele and in
aggregate account for a limited proportion of the phenotypic variance (~1.45%) (63).

Current GWAS designs are limited to detecting trait or disease associations with
common variation in accordance with the common disease-common variant (CDCV)
hypothesis (73). For BMI, the aforementioned 32 common SNPs account for ~1.45% of
the phenotypic variance, leaving a substantial fraction of the heritability in BMI
unaccounted for. As for other complex traits and diseases, this “missing heritability” has
lead to efforts to identify rare variants contributing to common disease. Given the
heritability of BMI and the observation that common SNPs only account for a portion of
the expected phenotypic variance, it is conceivable that additional classes of genetic
variants such as rarer and/or structural variation or epigenetic mechanisms influence body
composition. A growing number of rare copy number variants (CNV) have demonstrated
association with BMI and obesity (a catalogue of CNVs appears in Chapter 3) (74-82). In
addition, for many of the BMI/obesity-associated loci, it has yet to be determined if they
represent the causative locus or if they are merely correlated with the causative variant.
Fine mapping efforts by large-scale exome and genome sequencing efforts are needed to
identify the true causal variants. Indeed, such studies are underway and include the
UK10K project, a whole-genome sequencing study of 4,000 individuals and exome
sequencing of an additional 6,000 individuals, including 2,000 with extreme obesity
phenotypes (83).

In summary, despite an arguably changing environment, twin and family studies
support the significant role of genes in contributing to relative body weight and obesity
across the lifespan. However, as described in the preceding sections, most genes that
contribute to relative body weight and obesity are of largely unknown function and have
limited utility for risk prediction. This is further complicated by the fact that most studies
to date have been on samples of primarily European descent and cross-sectional in nature.
Additional research is needed in diverse human populations and it remains unknown
when in development the identified genetic effects become important for predicting BMI.
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OBESITY AND PSYCHIATRIC COMORBIDITY

Obesity is comorbid with numerous medical conditions including a variety of psychiatric
disorders and traits. Obesity has been associated with eating disorders, mood disorders,
substance use as well as personality disorders (84-86). For example, the National
Epidemiological Survey on Alcohol and Related Conditions (NESARC), a study of over
40,000 American adults, reports significant increased odds for many psychiatric disorders
among them include: lifetime prevalence of any anxiety disorder (OR = 1.4-2.3), lifetime
prevalence of alcohol dependence (OR = 1.1-1.6), and prevalence of antisocial
personality disorder (OR = 1.1-3.3) (86). Below appears a synopsis of three psychiatric
disorders and their association with obesity that are of particular relevance to this thesis.

Binge eating disorder

Binge eating disorder (BED) is under consideration for inclusion in the Diagnostic and
Statistical Manual of Mental Disorders, fifth edition (DSM-V). BED is currently defined
by the DSM-1V as a provisional eating disorder diagnosis characterized by recurrent
episodes of binge eating without weight control compensatory behavior and includes: (1)
“eating, in a discrete period of time (e.g., within any 2-hour period), an amount of food
that is definitely larger than what most people would eat during a similar period of time
and under similar circumstances,” and (2) “a sense of lack of control over eating during
the episode”. Additionally, individuals with BED must experience distress about their
binge eating and endorse three of the following symptoms: (1) eating more rapidly than
normal, (2) eating until uncomfortably full, (3) eating large amounts when not hungry, (4)
eating alone because of embarrassment, and (5) feeling disgusted, depressed or guilty
about overeating (87). Although obesity is not a requirement for a BED diagnosis,
research indicates that approximately 70% of those meeting criteria for BED are obese
(21). While the prevalence of BED in community samples ranges from 2-5%,
approximately 30% of obese individuals seeking weight control treatment meet criteria
for BED (88, 89). The recurrent overeating that characterizes BED, along with the
absence of compensatory behaviors exhibited by those with bulimia nervosa (BN), is
most likely responsible for the high frequency of obesity in this group.

Major depressive disorder and depression symptoms

According to the DSM-1V, major depressive disorder (MDD) is characterized by a
depressed mood most of the day nearly everyday for at least a two-week period and/or
diminished interest or pleasure in all or almost all activities. Additional criteria include
endorsement of at least three of the following symptoms: (1) significant weight loss or
weight gain, (2) insomnia or hypersomnia, (3) psychomotor agitation or retardation, (4)
loss of energy, (5) feelings of worthlessness or excessive guilt, (6) diminished ability to
concentrate and (7) recurrent thoughts of death or suicide (87). As reported by the 2006
National Comorbidity Survey Replication, the lifetime history estimates of MDD are
12.7% in men and 21.3% in women (90). However, within obese populations, reported
lifetime prevalence rates of depression have been shown to be elevated upwards of 32%
(20). In addition, Strine et al. found that adults with a current or lifetime diagnosis of
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depression were significantly more likely to engage in unhealthy behaviors such as
physical inactivity and to be obese (20). Furthermore, longitudinal phenotypic studies
have found a reciprocal association between obesity and depression, suggesting that
elevated BMI may increase depression and vice versa (91, 92). Cross-sectional studies of
BMI and depression symptoms have reported positive (93-97), negative (primarily in
males) (98, 99) and no association (100-102) between these traits. However, a population
based study from the Netherlands found a quadratic (U-shaped) association of BMI and
depression indicating those with the lowest and the highest relative body weight were
more likely to present with depression. In light of current DSM-1IV MDD criteria, which
include items related to increase and decrease in appetite, weight and energy expenditure,
it is feasible that BMI may be associated with greater levels of depression in both
underweight and obese individuals (103). Further research is needed to clarify the nature
of the association between body weight and depression.

Nicotine dependence and smoking behavior

Nicotine dependence (ND) is characterized by tolerance and withdrawal symptoms in
relation to tobacco use. ND can occur with cigarette smoking, smokeless tobacco use,
cigar or pipe use. According to the DSM-IV, ND is diagnosed by clinically significant
impairment or distress from the presence of any three of the following seven criteria
occurring at any time in the same 12-month period: (1) tolerance, (2) withdrawal, (3)
taking the substance in larger amounts than intended, (4) persistent desire or unsuccessful
efforts to cut down on the substance, (5) spending a great deal of time obtaining or
recovering from the effects of the substance, (6) giving up important recreational, social,
or occupational activities as a result of the substance, and (7) continued use of the
substance despite physical or psychological problems caused by the substance. There are
a number of questionnaires that are used to assess ND and the most widely used are the
eight-item Fagerstrom Tolerance Questionnaire (FTQ), the six-item Fagerstom Test for
Nicotine Dependence (FTND), which is a shortened version of the FTQ, excluding items
on nicotine yield of cigarettes and inhalation, and the two-item Heaviness of Smoking
Index (HSI), a shorter version of the same test only including items on time to first
cigarette after waking and number of cigarettes per day (104, 105). In 2010, according to
the Centers for Disease Control and Prevention, the estimate of American adults reported
as current smokers was 19.3% (106-108). Cross-sectional studies of smoking behavior
typically support a negative relationship between current smoking and BMI (109-111),
which may be due, in part, to effects of nicotine on energy homeostasis (112-116).
Furthermore, smoking cessation is often followed by weight-gain (113, 117, 118). In
contrast, however, a positive association is supported by the observation that within
smoking cohorts, heavy smokers tend to be of increased body weight compared to light
smokers (119-121). Additionally, smoking has been associated with accumulation of
visceral fat and increased waist circumference (122-124). Phenotypic associations
between smoking and body composition suggest a complex relationship and the causes of
these associations remain incompletely understood.
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SPECIFIC AIMS
Survey of limitations

GWAS has proven a fruitful approach for identifying polymorphisms that
contribute to disease risk for numerous complex traits and diseases (72). However, this
method has been met with important limitations, especially as applied to psychiatric
disorders. A number of potential factors have been proposed that may reduce the power
of this methodology in general, as well as for the field of common complex obesity
specifically.

To date, large-scale GWAS meta-analyses have confirmed 32 SNPs associated
with BMI which, although highly associated, have small individual effects ranging 0.06
to 0.39 kg/m” change in BMI per risk allele. Therefore, replication attempts have limited
power to achieve genome-wide significance, even with thousands of subjects (125).
Moreover, in aggregate these BMI-associated SNPs account for a fraction of the
phenotypic variance (~1.45%) (63), and thus have limited utility for risk prediction (67),
suggesting that other classes of genetic variants may be important.

Also, given that the large-scale meta-analyses of BMI were performed on samples
of primarily European descent, these findings may not be easily generalizable to other
ancestry groups. From a public health perspective, this is particularly problematic since
research indicates that there exist health disparities between racial groups, including
increased obesity prevalence in African- and Hispanic-Americans (126). The
aforementioned BMI-associated SNPs were identified from cross-sectional adults
samples, which does not address at what point during development these variants
influence BMI. The identification of specific “windows” of risk is essential for
understanding development as well as informing prevention and intervention efforts.

Furthermore, relative body weight has been associated with numerous other
medical conditions and traits. This may impact the power of gene identification efforts,
especially if control groups are not adequately screened for correlated traits or such
correlations are not accounted for in statistical methodology. There is a paucity of
literature reporting on the potential common genetic liability between obesity and
comorbid traits. Without consideration of genetically correlated traits, genome-wide
studies of complex disease may be limited in their power to detect etiologically relevant
variation.

In summary, the present survey of limitations of gene-identification efforts for
common complex obesity has identified the following issues: replication of variants with
small effects, utility of risk prediction, generalizability to multiple racial groups and
across the lifespan and affects of comorbidity. This thesis delves into many of these
limitations and attempts to address these issues through five specific aims.
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Specific aims

The purpose of this research was to develop methods to better delineate the genetics of
common complex obesity and the corresponding associations with depression symptoms
and smoking behavior through the following five aims:

1. Examine phenotypic associations between BMI, depression and smoking behavior
in clinical and epidemiological samples. Identify putative mediators and
moderators of the BMI-depression link and explore sample structures via
symptom profiles.

2. Apply multivariate twin methodology to BMI, depression and nicotine-use
phenotypes in order to test for shared genetic and environmental liability of
multiple traits and stability over time.

3. Catalogue common polygenic variation associated with body composition.

4. Test genetic variants catalogued for association in multiple cohorts and traits to
provide evidence of replication, assess clinical utility and potentially discover
variants influencing multiple traits.

5. Methods development in each of the preceding areas, presented throughout.
Thesis outline

In the following chapters, several studies will be described that integrate both GWAS and
twin study methodology to further our understanding of the genetics of BMI and common
complex obesity in the context of genetic risk scores, clinical risk prediction,
development across adolescence into adulthood, and comorbidity with depression
symptoms and smoking behavior. In the first chapter, the obesity epidemic and the
associated mortality and morbidity, and a highlight of the genetics of obesity and BMI
are reported in order to provide the necessary background.

In the subsequent two chapters, genetic risk sum scores (GRSS), which
summarize the total number of risk alleles and test the aggregate risk, as an alternative
form of replication and assess clinical utility for obesity risk prediction are performed.
Specifically, in Chapter 2, genetic variants were catalogued from two-large scale meta-
analyses of BMI in order to test a GRSS constructed by the count method in a sample of
European-Americans and African-Americans from the Molecular Genetics of
Schizophrenia Controls (MGS-C). In Chapter 3, to extend GRSS methodology, scores
were constructed from proxy versus imputed SNPs and count versus weighted methods
were compared. In addition to BMI-validated SNPs, previously implicated common and
rare CNVs were identified from the literature and were tested for association with BMI
and obesity. An integrated model of common and rare variation was tested for association
with BMI and subsequently assessed for clinical utility in a sample of European-
Americans and African-Americans from the Study of Addiction: Genes and Environment
(SAGE).
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Since there has been limited research on when during development BMI-
associated variants begin to influence BMI, Chapter 4, utilizes a longitudinal twin study
to assess the effects of adult-validated BMI-SNPs across adolescence into adulthood. To
our knowledge, this is the first study of BMI to incorporate GRSS methodology in the
context of variance decomposition. Furthermore, only limited models have been applied
to examine the genetic and environmental architecture of BMI across adolescence into
adulthood. Therefore, this study tested models to quantify the relative proportion of
genetic and environmental factors that persist across time versus those that are time
specific in the Virginia Twin Study of Adolescent Behavioral Development (ABD).

Obesity is comorbid with numerous medical conditions as well as a various
psychiatric disorders including eating disorders, mood disorders, and substance use (84-
86). In Chapters 5 through 8, phenotypic and genetic associations between BMI/obesity
and binge eating disorder (BED), depression symptoms and smoking behavior are
examined in several different types of samples. In Chapters 5 and 6, the University of
Minnesota Study of Binge Eating Disorder (UofMN), which is a clinical sample of
overweight and obese women with and without BED, is used to examine the relationship
of BED, food intake and internalizing symptoms of depression and anxiety. Additionally,
tracking of energy intake and expenditure is difficult and complicated by inaccuracies in
reporting (33). An improved understanding of the accuracy of self-reported food intake is
central to diagnosis of eating disorders, monitoring response to treatment and obesity
management. Therefore, in Chapter 5, energy intake and energy expenditure were
assessed by multiple methods to potential identify differences in food intake, metabolism
and accuracy of self-reported food intake in obese women with and without BED. In
Chapter 6, the UofMN sample was used to examine models by which BED, internalizing
behaviors of depression and anxiety influence food intake in overweight/obese women.
Greater understanding of the mechanisms underlying the associations between mood,
binge eating and food intake will facilitate the development of more effective prevention
and treatment strategies for both BED and obesity.

Despite numerous phenotypic associations between BMI, depression symptoms,
and smoking behavior, there is a paucity of reports investigating genetic and
environmental associations between them. To better understand the underlying common
genetic architecture, it is essential that the complex nature of the observed associations
between these traits be assessed. Accordingly, Chapters 7 and 8 investigate associations
between BMI, depression symptoms and smoking behavior by two different types of
genetically informed samples: twin studies and GWAS. In Chapter 7, twin study
methodology is used to investigate if shared genetic and/or environmental liability is
responsible for phenotypic associations found between relative body weight, depression
symptoms, and impulsivity in the Virginia 30,000 Twin Study (VA30k). Furthermore,
most studies do not examine common versus specific genetic effects. In Chapter 8,
genetic variants individually associated with BMI or smoking behavior were catalogued
and tested for association in The Health Aging and Body Composition Study (HABC) in
order to investigate whether genetic variants were associated with multiple behaviors or
were trait-specific. Without consideration of genetically correlated traits, genome-wide
studies of complex disease may be limited in their power to detect etiologically relevant
variation.
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Finally, Chapter 9 provides a global discussion of this thesis by summarizing key
findings from each study, discussing limitations of the research presented, and providing
extensions for future research. By utilizing several samples and methodologies and by
pursuing methods development, a comprehensive approach is presented that is hoped to
represent a more powerful evidence-based strategy to understanding the genetic and
environmental determinants of BMI and common complex obesity, along with the
associated depression symptoms and smoking behavior.

COHORTS

In order to implement the aims of this dissertation, several data types were utilized
including clinical studies, population-based twin samples and samples genotyped for the
study of common diseases. Table 1 lists each study along with the corresponding sample
and the chapter in which it appears.

L Molecular Genetics of Schizophrenia Controls (MGS-C)

The MGS-C is a cross-sectional sample of 2,653 European-Americans and
973 African-Americans. Participants were considered for “control” status if
they denied all of the following psychosis screening questions: treatment for
or diagnosis of schizophrenia or schizoaffective disorder; treatment for or
diagnosis of bipolar disorder or manic-depression; treatment for or diagnosis
of psychotic symptoms such as auditory hallucinations or persecutory
delusions. Participants completed an online questionnaire, which included
items on height and current weight. Venipuncture for DNA extraction and
establishment of lymphoblastoid cell lines was completed at Rutgers
University Cell and DNA Repository. DNA samples were genotyped using
the Affymetrix 6.0 array at the Broad Institute.

11 Study of Addiction: Genes and Environment (SAGE)

Complete data on height, weight, alcohol dependence, nicotine dependence,
genotypes and copy number variants were available for 1850 European-
American and 498 African-American SAGE participants. The SAGE sample
was drawn from three contributing projects: the Collaborative Study on the
Genetics of Alcoholism (COGA), the Collaborative Study on the Genetics of
Nicotine Dependence (COGEND) and the Family Study of Cocaine
Dependence (FSCD). Body composition variables were not available for the
FSCD sample, thus not included in the analyses described herein. Study
variables were assessed by interview using versions of the Semi-Structured
Assessment for the Genetics of Alcoholism. Body mass index (BMI) was
calculated from self-reported height and weight. Samples were genotyped on
the [llumina Human 1M beadchip at the Center for Inherited Diseases
Research at Johns Hopkins University.
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Virginia Twin Study of Adolescent Behavioral Development (ABD)

ABD is a longitudinal population-based twin study of adolescent
psychopathology. ABD twin participants twins aged 8 to 17 were recruited
through Virginia schools and were followed-up every 18 months for up to four
waves of data collection (n = 2,794). In total, there were 913 participants from
639 families (291 twin pairs, 348 singletons) that were also genotyped on the
[llumina Human 660 array. BMI was calculated from measured weight and
height.

University of Minnesota Study of Binge Eating Disorder (UofMN)

Thirty-four women participated in this study examining metabolic measures,
including 17 meeting clinical criteria for binge eating disorder and 17
overweight/obese controls with no history of any binge eating or eating
disorder behaviors. Food intake was assessed from a laboratory eating
episode, 24-hour dietary recall interviews and food diaries. Energy
expenditure was assessed by the doubly labeled water technique, basal
metabolic rate and the thermic effect of food. Furthermore, participants
completed a variety of questionnaires including the Beck depression and
anxiety inventories.

The Virginia 30,000 Twin Study (VA30k)

The VA30k sample is a large population-based twin study. Ascertainment for
the VA30k sample was through two sources, a volunteer twin sample solicited
through the American Association of Retired Persons and the Virginia Twin
Registry. BMI data was available for n=14,457 adult twins. Participants
completed the Health and Lifestyle Questionnaire, which included abbreviated
versions of the Symptoms Checklist and the Eysenck Personality
Questionnaire and smoking history.

The Health Aging and Body Composition Study (HABC)

The HABC study is a prospective community based sample of body
composition changes over time in elderly adults and included 1663 European-
American and 1139 African-American participants. Participants were
recruited in 1997-1998 from Pittsburgh, PA, and Memphis, TN metropolitan
area residents who were Medicare eligible and between the ages of 69 and 80
years. BMI was calculated from laboratory measured height and weight
during initial evaluation. Physical activity was estimated from a structured
interview of 27 questions. Computerized tomography was used to determine
abdominal visceral adiposity density. Smoking habits and race were self-
reported via telephone interview. Genotyping was performed by the Center for
Inherited Disease Research using the [llumina Human 1M-Duo BeadChip
system.
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Table 1: Summary of dissertation studies

Chapter Study Sample Design Phenotype Aim

Genetic risk sum score comprised of common Cross-sectional, .

2 polygenic variation is associated with body mass index MGS-C GWAS BMI, obesity 3,45
Association of common and rare variation influencing Cross-sectional

3 body mass index: A combined single nucleotide SAGE > BMI, obesity 3,4,5

. L . GWAS, CNV

polymorphism and copy number variation analysis
Association of common polygenic variation with body Loneitudinal

4 mass index across adolescent development: A ABD ne ’ BMI 2,4,5

Y . twin, GWAS

longitudinal twin study
Comparisons of energy intake and energy expenditure

5 in overweight and obese women with and without U of MN  Clinical BED, obesity 1,5
binge eating disorder
Binge eating disorder mediates links between BED, obesity,

6 symptoms of depression, anxiety, and energy intake in U of MN  Clinical depression 1,5
overweight and obese women symptoms
Genetic and environmental associations between body . BMI, depression

. . . .. Cross-sectional,

7 mass index, depression symptoms and impulsivity in a VA30k twith symptoms, 1,2
population-based sample of twins: VA30k impulsivity
On th§ genetic anq en.Vl.r(.)nr.nental rel.atlo.nshlp of body Cross-sectional, BMI, smoking

8 mass index, smoking initiation and nicotine VA30k . . 1,2

) . . twin behavior

dependence in a population-based sample of twins

3 Evidence of shared polygenic risk among smoking HABC Cross-sectional, BMI, obesity, 1.3.4

behaviors and body composition

GWAS

smoking behavior
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Chapter 2: Genetic risk sum score comprised of common
polygenic variation is associated with body mass index

Adapted from: Peterson RE, Maes HH, Holmans P, Sanders AR, Levinson DF, Shi J, Kendler
KS, Gejman PV, Webb BT. Genetic risk sum score comprised of common polygenic variation is
associated with body mass index. Human Genetics. 2011 Feb;129(2):221-30.

ABSTRACT

Genome-wide association studies (GWAS) of body mass index (BMI) using large
samples have yielded approximately a dozen robustly associated variants and implicated
additional loci. Individually these variants have small effects and in aggregate explain a
small proportion of the variance. As a result, replication attempts have limited power to
achieve genome-wide significance, even with several thousand subjects. Since there is
strong prior evidence for genetic influence on BMI for specific variants, alternative
approaches to replication can be applied. Instead of testing individual loci sequentially, a
genetic risk sum score (GRSS) summarizing the total number of risk alleles can be tested.
In the current study, GRSS comprised of 56 top variants catalogued from two large meta-
analyses was tested for association with BMI in the Molecular Genetics of Schizophrenia
controls (2,653 European-Americans, 973 African-Americans). After accounting for
covariates known to influence BMI (ancestry, sex, age), GRSS was highly associated
with BMI (p-value = 3.19x10°) although explained a limited amount of the variance
(0.66%). However, area under receiver operator criteria curve (AUC) estimates indicated
that the GRSS and covariates significantly predicted overweight and obesity
classification with maximum discriminative ability for predicting class III obesity
(AUC=0.697). The relative contributions of the individual loci to GRSS were examined
post hoc and the results were not due to a few highly significant variants, but rather the
result of numerous variants of small effect. This study provides evidence of the utility of
a GRSS as an alternative approach to replication of common polygenic variation in
complex traits.
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INTRODUCTION

Obesity is a general medical condition, defined clinically by a body mass index (BMI)
greater than 30 kg/m” and is associated with increased risk of cardiovascular disease, type
IT diabetes, cancer and poor quality of life (12, 127, 128). The National Center for Health
Statistics reports over 33% of American adults are obese with another 33% meeting
criteria for being overweight (127, 129). Although increase in energy intake with reduced
physical activity contributes to the increase in obesity, genetic factors have consistently
been demonstrated to influence individual differences in BMI, with twin and family
studies estimating heritabilities of ~0.70 (35, 36).

Genome-wide association studies (GWAS) have successfully identified
polymorphisms that contribute to disease risk for numerous complex traits and diseases
(72). GWAS for BMI and obesity using sample sizes in the tens of thousands have
yielded many putative risk variants of individually small effect. The first common single
nucleotide polymorphisms (SNPs) associated with BMI and common obesity were in the
fat mass and obesity-associated (F70) gene and near melanocortin 4 receptor (MC4R)
and have been widely replicated (66, 130-135). Additionally, two large-scale BMI meta-
analyses, Thorleifsson et al. (2009) and Willer et al. (2009), yielded 13 genetic loci
reaching genome-wide significance, including the previously implicated variants in or
near FTO and MC4R. These variants were highly significant but had modest effects with
0.06-0.4 kg/m” per allele change in BMI and modest obesity (BMI>30 kg/m?) odds ratios
ranging 1.03-1.3. Although many loci are expected to contribute to a complex trait like
BMLI, the large number implied by the current result was unexpected to many (136, 137).
Despite the large sample size (n>30,000), Willer ef al. (2009) estimated 5-10% power to
detect genome-wide significant variants with effect sizes of 0.06-0.1 BMI units per allele.
Therefore, it is likely that many variants influencing BMI did not reach genome-wide
significance in these meta-analyses.

Replication attempts using studies unselected for BMI have limited power to
achieve genome-wide significance, even with thousands of subjects (125). Since there is
strong a priori evidence for genome-wide significant and suggestive variants from the
large meta-analyses, alternative approaches to replication can be applied. Instead of
testing individual loci sequentially, a genetic risk sum score (GRSS) summarizing the
total number of risk alleles can be constructed and tested. The aggregate risk should be
significant if a sufficient proportion of the variants have real effects. GRSS have been
used to test the total impact of associated variants on complex traits and disease. For
example, Aulchenko ef al. (2009) used 54 variants in a GRSS which accounted for ~4%
of the phenotypic variance in height. Risk scores incorporating 18-20 genome-wide
significant variants have been shown to be associated and predictive of type II diabetes,
though algorithms including family history and additional risk factors perform better
(138, 139). GRSS have also been applied to BMI and obesity in populations of European
and Chinese descent which incorporated 8-15 variants and accounted for 0.5-1.12% of
the phenotypic variance (64, 65, 140-143). Presently, BMI GRSS have only incorporated
genome-wide significant variants. However, research by Evans et al.(2009), suggests that
in some cases, including bipolar disorder, coronary heart disease, hypertension and type
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IT diabetes, using liberal thresholds (o = 0.5) for SNP selection in GRSS may improve
predictive ability.

The purpose of this study was to test a GRSS comprised of replicated genome-
wide significant variants as well as additional variants with suggestive evidence
catalogued from large scale meta-analyses for association with BMI in 2,653 European-
Americans and 973 African-Americans from the Molecular Genetics of Schizophrenia
control sample (MGS-C). Based on the expected BMI effect sizes of 0.05-0.3 kg/m” per
allele change in BMI, the MGS-C sample would have limited power to detect genome-
wide significant variants for individual loci. However, the aggregate risk should be
adequate if a sufficient proportion of the reported variants are real. Therefore, these
analyses serve as a replication attempt of top variants catalogued from large-scale meta-
analyses via a sum score approach.

MATERIALS AND METHODS
Participants and phenotypes

The MGS-C sample has been previously described in detail (144-146). In summary,
Knowledge Networks, Inc., a survey research company, recruited self-identified non-
Hispanic European-American and African-Americans from a nationwide panel of survey
participants, which was assembled by random digit dialing except 772 of the African-
Americans were recruited through a subcontract to Survey Sampling International by
internet banner ad recruitment. The institutional review board approval was obtained at
NorthShore University HealthSystem and participants completed an online consent with
an identical hard-copy consent signed at venipuncture. Participants completed an online
questionnaire, available at nimhgenetics.org, which included items on height and current
weight. BMI was calculated from respondents’ self reported height and current weight.
Participants were removed from data analysis if there was missing data on either height
or weight or if calculated BMI was less than 15 or greater than 60 as values not in this
range were likely data entry errors. There were 2,653 European-Americans and 973
African-Americans included in the present study. Phenotypic details are displayed in
Table 2 with full sample characteristics found in Sanders et al. (146).

Genotyping

Venipuncture for DNA extraction and establishment of lymphoblastoid cell lines was
completed at Rutgers University Cell and DNA Repository. DNA samples were
genotyped using the Affymetrix 6.0 array at the Broad Institute. There were 3,827
participants genotyped (n=2,817 European-American, n=1,010 African-American) of
which 3,626 (95%) passed stringent quality control criteria. Principal component (PC)
scores reflecting continental and within-Europe ancestries of each subject were computed
and outliers were excluded. Genomic control A values for autosomes after quality control
procedures were 1.005 for African-American and 0.998 for the European-Americans.

Selection of 56 SNPs
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Preliminary SNP selection identified 78 variants meeting criteria for genome-wide or
suggestive significance in either of two large meta-analyses of BMI, 43 from
Thorleifsson et al. (2009) and 35 from Willer et al. (64, 65). Thorleifsson and colleagues
report genome-wide significant (p < 1.6x107) associations with 29 SNPs in 11
chromosomal regions, using a discovery sample of n=34,416 and replication sample of
n=5,586. The Willer et al. meta-analysis detected 8 genome-wide significant (p<5.0x10")
SNPs in first- and second-stage samples of n=32,387 and n=54,316, respectively. Only
variants in or near FTO and MC4R were found to be genome-wide significant in both
meta-analyses. The remaining genetic loci were suggestive in the opposing meta-analyses
(p<0.05) except rs7138803 on 12q13 (p=0.14). Significance level for one SNP,
rs10938397 on 4p12, could not be compared between meta-analyses because there was
no corresponding proxy SNP. Of the 78 variants catalogued, 29 had matching SNPs on
the Affymetrix 6.0 array. For the 49 SNPs not present, proxies (45 r2>0.8; 4

r2>0.7) were identified using SNP Annotation and Proxy Search V2.1 (147). Following
removal of 7 duplicate proxies and 6 variants from Willer et al. for which no proxies
were available (r2>0.7), 65 SNPs remained. Haploview version 4.10 was used

to determine phase and corresponding proxy alleles (148, 149). In order to avoid bias due
to correlated effects, SNP pruning (r*>0.8) was performed using PLINK v. 1.07p

(150). Of the 56 remaining SNPs, 19 met genome-wide significance criteria in the two
meta-analyses. The additional 37 were included as they were the next top SNPs reported
(p<0.05). Although our SNP selection threshold was more liberal than the traditional
genome-wide significance threshold, it was more conservative than other models of
complex disease risk prediction (151, 152). Table 5 details information on the 78
catalogued SNPs.

Genetic risk sum score

Under an additive model, 56 variants were used to construct the GRSS. The use of an
additive model was chosen as specific non-additive effects have yet to be associated and
confirmed in the literature. The GRSS was calculated by summation of the number of
risk alleles across the 56 variants divided by the number of SNPs in the score to obtain an
average number of risk alleles per locus. GRSS were calculated using the profile option
in PLINK. If SNP information was missing in an individual then the scoring routine
imputed expected values based on sample allele frequency. R version 2.20.0 was used to
fit linear regression models using standard covariates and GRSS as predictors with BMI
as the outcome variable. To facilitate interpretation of effects in linear models
independent variables were centered.

Prediction of obesity

One method to assess diagnostic efficiency is to graph a receiver operator criteria (ROC)
curve, which is a plot of the true positive rate (sensitivity) against the false positive rate
(1 - specificity) and calculate the corresponding area under the curve (AUC). An AUC
may range from 0.5, non-informative, to a maximum of 1.0, perfect discrimination
between cases and controls. An AUC is the probability that the predictor is greater for
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cases than controls (153, 154). Generally, an AUC of 0.80 is suitable for screening while
0.99 is acceptable for diagnosis (155). To test various BMI thresholds, current BMI was
dichotomized to create categories of overweight and obesity class I, IT and III which had
corresponding ranges of BMI> 25, 30, 35 and 40 kg/m? respectively. Binary logistic
regression was used to calculate predicted probabilities of the models and was used as the
predictor to generate ROC curves. Discriminative accuracy of the GRSS and covariates
(molecularly derived ancestry, sex, age, ancestry by sex interactions) to predict BMI
category was estimated by calculating the AUC from ROC curves using PASW Statistics
version 17.0.

RESULTS
Phenotypic detail

Descriptive statistics for age and BMI are presented by race and sex in Table 2. The mean
age of participants was 48.8 and ranged from 18 to 90 and as depicted in Figure 3
produced a relatively normal distribution. BMI was not significantly associated with age
(p=0.135, Figure 4). Males were significantly older than females and European-American
females and males were significantly older than African-American females and males
(p<0.0001). When partitioning the sample by clinically established BMI (kg/m?)
categories, 29.0% was either under or normal weight (BMI<25), 33.4% was overweight
(25<BMI <30), 20.4% was obese class 1 (30<BMI<35), 9.5% was obese class 11
(35<BMI<40) and 7.7% was obese class I1I (40<BMI). There was a significant ancestry
by sex interaction with BMI. As expected, females had significantly greater BMI than
males with African-American females having greater BMI than European-American
females and African-American males having greater BMI than European-American
males (p<0.0001). Phenotypic findings in the MGS-C sample are consistent with cross-
sectional data from the National Center for Health Statistics and National Health and
Nutrition Examination Study (156), finding obesity more prevalent in women and
African-Americans. Additional sample characteristics have been previously reported
(146).

Genetic risk sum score

Fifty-six variants catalogued from two large-scale BMI meta-analyses were used to
construct the GRSS (64, 65). These variants were summarized in the GRSS, which was
calculated by the summation of the number of risk alleles across the SNPs for each
individual divided by the number of SNPs in the score to achieve an average allele count.
The frequencies of GRSSs are shown in Figure 1 and produced a relatively normal
distribution. The mean GRSS, or average number of risk alleles present per locus, was
0.494 (SD=0.052) with a range from 0.318 to 0.691, which corresponds to an average of
55 risk alleles per person with a range from 35 to 77.

Results from linear regression analyses are presented in Table 3. Standard
covariates known to influence BMI (ancestry, sex and age) were included in the models.
Described previously (144, 145), 224 ancestry informative markers were used to
construct 10 PC scores designed to discriminate between European, African, Ameri-
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Indian and Asian ancestry. PC1 (distinguishes European from African ancestry) and PC4
(distinguishes Eastern and Western European ancestry) were significantly associated with
BMI and therefore included as covariates. Interactions between the covariates were tested
and significant interactions were found between PC1 and sex and PC4 and sex. No other
interactions between the covariates were significant. Model 1, the base model, included
the standard covariates and the significant interactions between ancestry PCs and sex and
accounted for 3.5% of the variance in BMI. Model 2, which added the GRSS to the base
model, fit significantly better (F (1,3027) =21.8, p=3.2x10"®) and accounted for an
additional 0.66% of phenotypic variance in BMI for a total of 4.1%. We note that the
GRSS accounted for more of the variance in BMI than either sex or age. Interactions
between the covariates and the GRSS were tested but no significant interactions were
found (presented in Table 6). Therefore, our results suggest that GRSS was equally
associated with BMI in men and women, in European- and African-Americans and across
all ages. The relative contributions of the individual loci to the GRSS were examined post
hoc by dropping the most significantly associated SNP from the score iteratively until the
score was no longer statistically associated with BMI. As depicted in Figure 2, the GRSS
reached non-significance after dropping the top 23 variants.

Prediction of obesity

To test the discriminative accuracy of the GRSS and covariates (molecularly
derived ancestry, sex, age, ancestry by sex interactions) to predict obesity, ROC curves
were plotted and the corresponding AUC were calculated. To test various BMI
thresholds, current BMI was dichotomized to create categories of overweight and obesity
class I, I and III. Figure 2 displays statistics from ROC curve analysis by BMI category.
AUC estimates indicated that the model significantly predicted overweight and obesity
classification with maximum discriminating ability when predicting class III obesity
(AUC=0.697, 95% CI=[0.663, 0.731]). We note that the clinical setting may prefer to
use self-identified ancestry as opposed to molecularly derived ancestry in risk prediction
because of genotyping cost. In the MGS-C data, the use of self-identified ancestry did not
greatly change AUC estimates. For example, when predicting BMI >30 kg/m?, an
AUC=0.588 was reported when using molecularly derived ancestry versus an
AUC=0.586 when using self-identified ancestry in the model (full data not shown).

DISCUSSION

In this paper, we have constructed a GRSS comprised of 56 common polygenic variants
and shown its association with BMI in 2,653 European-Americans and 973 African-
Americans from the MGS-C sample. The GRSS was highly associated with BMI (p-
value = 3.19x10®) and accounted for 0.66% of phenotypic variance in BMI. The
association of the GRSS with BMI was comparable to sex, a known factor to influence
body composition. The average effect of carrying 10 risk variants was an increase in BMI
of 1.1 kg/m”. This corresponds to a weight increase in an average male (5 feet 9 inches,
180 pounds) of 8 pounds and an average female (5 feet 4 inches, 155 pounds) of 7
pounds. Further, we have shown the association of the GRSS with BMI was not the
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result of the few most significant SNPs but rather the aggregate of many SNPs of small
effect. These results are consistent with the common disease common variants hypothesis
indicating genetic variants common in the population with small effects contributes to the
heritability of common traits and diseases.

ROC curves and the corresponding AUC estimates indicated statistical
discriminative ability to predict obesity (BMI >30 kg/m?, AUC=0.588, 95% CI= [0.567,
0.610]). AUC estimates were similar to those found in previous studies. For example,
Renstrom et al. (140) used a genetic score of 9 SNPs and reported an AUC estimate of
0.575 in a sample of 353 obese and 1,370 normal weight diabetic and non-diabetic
northern Swedes. Additionally, a study by Cheung et al. (2010) estimated an AUC of
0.582 with a genetic score including 13 SNPs in a Chinese sample of 470 obese cases and
700 normal weight controls. Although these AUC estimates were statistically significant,
they were below 0.8, the threshold used in clinical practice for screening. In the MGS-C
sample, however, the ability to predict morbid obesity (class III) was notably better and
approached clinical criteria for a screening test (AUC=0.697, 95% CI=[0.663, 0.731]).

In the MGS-C sample, 4.1% of the phenotypic variance in BMI was accounted for
using a model including sex, ancestry based on molecular derived principal components,
age, and a GRSS comprised of 56 SNPs. Despite high heritability of BMI, much variance
in BMI remains unaccounted for. Based on the progress in identifying loci influencing
height, it is likely that a considerable portion of the ‘missing heritability’ resides in
unidentified variants yet to be discovered by larger sample sizes (157). Large-scale
international collaborative groups will be required to identify these additional variants
with similar and smaller effect sizes.

Additionally, predictive models have yet to include other sources of variation
known or hypothesized to influence BMI such as rare variants, gene-gene (GxG) or gene-
environment (GxE) interactions, copy number variation, and epigenetic effects. For
instance, rare variants which were not included in the current genetic risk profiles are
likely to contribute to BMI heritability. For example, in a study by Blakemore et
al.(2009), a rare variant in the visfatin gene was associated (p-value=8.0x10~, minor
allele frequency 1.6% in control and 0.4% in obese subjects) with reduced risk for
obesity. There is also evidence to support the influence of copy number variation (CNV)
on BMI. In the Willer et al.(2009) meta-analysis, when examining CNV by SNP-CNV
linkage disequilibrium, they found 10-kb and 45-kb deletion polymorphisms upstream of
NEGRI1 with the 45-kb deletion flanked by their two most associated BMI SNPs. The
recent advent of SNP arrays designed for CNV detection may reveal additional genetic
associations with BMI. Epigenetic variation, although more widely researched in
syndromic obesity such as Prader-Willi, may also be linked to common obesity. Finally,
GxG interactions have yet to be included in risk prediction of body composition. Twin
studies support the role of non-additive genetic effects although most study designs have
limited ability to detect them (35, 158).

Since obesity has increased dramatically while the genome has arguably remained
stable, future research needs to address moderation effects of the environment. Known
obesogenic factors such as physical activity and food intake have been shown to account
for a significant portion of the variance in BMI with estimates ranging 5-10% (159-162).
Additionally, research is beginning to elucidate GXE affecting BMI (163-167). At least
two genes included in the current GRSS show evidence for GXE effects. For example,
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Rampersaud et a/.(2008), in a study of 704 Old Order Amish, found the effects of FTO
variants associated with elevated body weight were attenuated in subjects with higher
physical activity levels. Additionally, interactions between MCR4 and dietary intake and
selection have been shown in model organisms (168-171). For example, mice when given
a 3-choice diet and administered a melanocortin agonist preferentially decreased fat
consumption (172). Further, variation in human MCR4 has been associated with binge
eating (173-175) and with higher total energy intake and selection of foods high in
dietary fat (165). BMI prediction models will benefit from incorporating known
obesogenic environmental variables such as physical activity and food selection and
intake.

The purpose of this study was to test a GRSS as an alternative approach to
replication of association of common polygenic variation with BMI. As hypothesized the
MGS-C sample had limited power to replicate individual loci when employing genome-
wide significant thresholds even though there was strong a priori evidence of these
variants to influence BMI. However, by constructing a GRSS summarizing the total
number of risk alleles, the aggregate risk was found to be highly significantly associated
with BMI. This study provides evidence of the utility of GRSS as an alternative approach
to replication of common polygenic variation in complex traits. Furthermore, the results
from the AUC analysis demonstrate meaningful progress towards a screening test that
perhaps if used in conjunction with known obesogenic predictors such as physical
activity and food selection and intake could identify persons for early environmental or
medical intervention to prevent morbid obesity and the associated negative health
consequences.
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TABLES AND FIGURES

Figure 1: Frequencies of genetic risk sum score
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Figure 2: Number of SNPs in genetic risk sum score by —log significance of score
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Note: GRSS = genetic risk sum score, -log = negative logarithm base 10, SNPs = single
nucleotide polymorphisms.
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Table 2: Descriptive statistics of MGS-C sample by race and sex

Group n Mean SD
AA Males 381
Age 46.59 13.39
BMI 29.62 5.95
AA Females 592
Age 44.89 12.93
BMI 31.90 8.12
EA Males 1269
Age 52.72 16.04
BMI 28.39 541
EA Females 1384
Age 48.59 16.42
BMI 28.87 7.48

Note: AA = African-American, EA = European-American, Age = age in years, BMI =
body mass index kg/m”.
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Table 3: Linear models predicting BMI in MGS-C sample

Model Estimate SE T p-value

Model 1: Covariates

F63028=19.18, p-value < 2.2E-16, Adj. R-squ = 0.0347
Intercept 29.18 0.12 23836 <2E-16
PC1 94.78 11.99 7.90 3.8E-15
PC4 -49.19 19.05 -2.58 0.009
Sex 1.03 0.24 4.16 3.2E-05
Age 0.01 0.01 1.49 0.135
PC1*Sex 84.31 24.00 3.51 4.5E-04
PC4*Sex -76.07 38.00 -2.00 0.045

Model 2: Covariates including GRSS

F73007=19.66, p-value <2.2E-16, Adj. R-squ = 0.0413
Intercept 29.18 0.12 239.17 <2E-16
PC1 110.69 12.43 8.90 <2E-16
PC4 -51.66 18.99 -2.72 0.006
Sex 1.03 0.24 4.20 2.7E-05
Age 0.01 0.01 1.50 0.132
PC1*Sex 85.57 23.91 3.57 3.5E-04
PC4*Sex -74.42 37.87 -1.96 0.049
GRSS 11.41 2.44 4.66 3.2E-06

Note: BMI = body mass index kg/m?, GRSS = genetic risk sum score, PC1 = principal
components score distinguishes European from African ancestry, PC2 = principal
components score distinguishes Eastern from Western European ancestry, Adj. R-squ =
adjusted R-squared.
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Table 4: Discriminative accuracy of genetic risk sum score and covariates predicting BMI
category in the MGS-C sample

n AUC Asy.
Group .
(%) [CI] Sig.
Overweight 2157 0.613 1.21E-22
(71.1)  [0.591,0.635]
Obese 1 1139 0.588 3.11E-16
(37.5) [0.567,0.610]
Obese 2 519 0.647 5.32E-26
(17.1) [0.621,0.673]
Obese 3 232 0.697 1.75E-23

(7.6)  [0.663,0.731]

Note: BMI = body mass index kg/m?, AUC = area under the receiver operator criteria
curve, Asy. Sig. = asymptotic significance, Overweight = BMI >25 kg/m?, Obese I =
BMI >30 kg/m’, Obese I = BMI >35 kg/m?, Obese I1I = BMI >40 kg/m” predictors
included in models: molecularly derived ancestry (principal components PC1 and PC4),
sex, age, PC1 by sex and PC4 by sex interactions and genetic risk sum score.
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SUPPLEMENTARY MATERIAL

Figure 3: MGS-C distribution of age in years
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Figure 4: Mean age in years by BMI category
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Table 6: Linear model predicting BMI including GRSS interactions with covariates

Model

Estimate

SE

p-value

Model : Covariates including GRSS
F(11,3023) = 13.06,p—value< 22E-16, Ad] R—squ =0.0418

Intercept
PC1

PC4

Sex

Age
PC1*Sex
PC4*Sex
GRSS*PC1
GRSS*PC4
GRSS*Sex
GRSS*Age
GRSS

29.22
115.40
-50.01
1.03
0.01
98.06
-76.75
164.20

-105.40

7.69
-0.20
11.69

0.13
13.42
19.34
0.25
0.01
24.86
38.06
264.30
372.60
4.99
0.15
2.48

227.85
8.60
-2.58
4.17
1.58
3.94
-2.02
0.62
-0.28
1.53
-1.32
4.71

<2E-16
<2E-16
0.009
3.1E-05
0.113
8.1E-05
0.044
0.534
0.777
0.123
0.186
2.6E-06

Note: BMI = body mass index kg/m?, GRSS = genetic risk sum score, PC1 = principal
components score distinguishes European from African ancestry, PC2 = principal
components score distinguishes Eastern from Western European ancestry, Adj. R-squ =

adjusted R-squared.
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Chapter 3: Association of common and rare variation
influencing body mass index: A combined single nucleotide
polymorphism and copy number variation analysis

Adapted from: Roseann E. Peterson, Hermine H. Maes, Peng Lin, John R. Kramer, Victor M.
Hesselbrock, Lance O. Bauer, John 1. Nurnberger, Jr., Howard J. Edenberg, Danielle M. Dick and
Bradley T. Webb. On the association of common and rare variation influencing body mass index:
A combined Single Nucleotide Polymorphism and Copy Number Variation analysis. European
Journal of Human Genetics (Submitted).

ABSTRACT

As the architecture of complex traits incorporates a widening spectrum of genetic
variation, analyses integrating common and rare variation are needed. Body mass index
(BMI) represents a model trait, since common variation shows robust association but
accounts for a fraction of the heritability. A combined analysis of single nucleotide
polymorphisms (SNP) and copy number variation (CNV) was performed using 2,348
European and African-Americans from the Study of Addiction: Genetics and
Environment. Genetic risk sum scores (GRSS) were constructed using 32 BMI-validated
SNPs and aggregate-risk methods were compared: count versus weighted and proxy
versus imputation. The weighted SNP-GRSS constructed from imputed probabilities of
risk alleles performed best and was highly associated with BMI (p=4.3x10"'®) accounting
for 3% of the phenotypic variance. In addition to BMI-validated SNPs, common and rare
BMI/obesity-associated CNV's were identified from the literature. Of the 84 CNVs
previously reported, only 21-kilobase deletions on 16p12.3 showed evidence for
association with BMI (p=0.003, frequency=16.9%), with two CNVs nominally associated
with moderate-obesity, 1p36.1 duplications (OR=3.1, p=0.009, frequency 1.2%) and
5q13.2 deletions (OR=1.5, p=0.048, frequency 7.7%). All other CNVs, individually and
in aggregate, were not associated with BMI or obesity. The combined model, including
covariates, SNP-GRSS, and 16p12.3 deletion accounted for 11.5% of phenotypic
variance in BMI (p=3.34x10~*) and area-under-the-curve (AUC) estimates significantly
predicted obesity classification with maximum discriminative ability for morbid-obesity
(AUC = 0.750). Results show that incorporating validated effect-sizes and allelic
probabilities improve prediction algorithms. Although rare-CNVs did not account for
significant phenotypic variation, results provide a framework for integrated analytic
approaches.
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INTRODUCTION

Obesity, defined clinically by a body mass index (BMI) greater than 30 kg/m?, is a
serious public health problem that occurs in over 1/3 of American adults (11, 12, 127,
176) and is associated with numerous medical conditions including cardiovascular
disease (13), type II diabetes (14, 15), cancer (16) and is comorbid with multiple
psychiatric disorders (17-21). Although nutritional intake and physical activity affect
relative body weight, twin and family studies have consistently shown a significant
genetic contribution to body composition with heritability estimates of 40 to 70% (34-
36).

Genome-wide association studies (GWAS) have successfully identified single
nucleotide polymorphisms (SNPs) that contribute to inter-individual variation in BMI and
common obesity (177, 178). To date, there are 32 SNPs showing robustly replicated
association with BMI; these individually have small effects ranging 0.06 to 0.39 kg/m*
change in BMI per risk allele and in aggregate they account for a limited proportion of
the phenotypic variance (~1.45%) (63). The variant with largest effect, 0.39, is located in
the first intron of the fat mass and obesity-associated (FTO) gene; this effect size
corresponds to a weight increase per each risk allele of 2.5 pounds for an individual 5 feet
7 inches. The frequencies of the 32 risk-alleles range from 4 to 87% in populations of
European descent (63-65).

Current GWAS designs are limited to detecting trait or disease associations with
common variation in accordance with the common disease-common variant (CDCV)
hypothesis (73). Although the number of robustly associated SNPs is limited, using the
Genome-wide Complex Trait Analysis (GCTA) approach which uses all genetic variation
measured, accounted for 17% of the phenotypic variance in BMI (179). However, this
still leaves substantial heritability unaccounted for and has lead to efforts to identify rare
variants contributing to common disease. Given the heritability of BMI and the
observation that common SNPs only account for a portion of the expected phenotypic
variance, additional classes of genetic variants such as structural and lower frequency
variation are likely to influence body composition. Indeed there is a growing list of rare
copy number variants (CNV) associated with BMI and obesity (74-82).

As the architecture of common complex traits and diseases has been associated
with a widening spectrum of genetic variation, analyses integrating common and rare
variation are needed. BMI represents a model trait for this approach, since common
variation shows robust association but accounts for a limited portion of the heritability.
Additionally, an increasing number of reports implicate structural and rare variation in
BMI, which may account for a portion of the ‘missing heritability’. Therefore, this study
constructed and tested an integrated model of common and rare variation associated with
BMI and obesity in 2,348 Americans of European and African descent from the Study of
Addiction: Genetics and Environment (SAGE). We catalogued genetic variants
associated with BMI and obesity from the literature, including common SNPs and
common and rare CNVs. Given modest effect-sizes of common variants influencing
BMI; the power to detect statistically significant genome-wide associations is limited.
Therefore, instead of testing individual loci sequentially, a genetic risk sum score (GRSS)
summarizing the total number of risk variants using loci with strong a priori evidence
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was constructed and tested. We constructed SNP-GRSSs using 32 validated BMI-SNPs
by both count and weighted methods. Additionally, to compare and extend existing
methods, SNP-GRSSs using imputed genotype probabilities were constructed. Previously
we applied the count method to a separate sample (180) and are extending this work to
test weighted scores as well as scores constructed from imputed genotypes. Furthermore,
common BMI/obesity-associated CNVs were tested individually as well as in aggregate
by count scores. Given the limited power to detect low frequency variants (181, 182),
rare BMI/obesity-associated CNVs were tested as collections by CNV-GRSSs.
Additionally, since rare CNV burden scores have been associated with obesity (74, 77),
the genome-wide load of rare CNVs was tested. Integrated linear and logistic regression
models incorporated the following predictors via a stepwise process: standard covariates,
SNP-GRSS, BMI/obesity-associated common CNVs, common CNV-GRSSs, rare
BMI/obesity-associated CNV-GRSSs and rare CNV genome-wide burden scores.
Furthermore, to assess clinical utility, the best fitting models were tested for obesity risk
prediction by plotting receiver operator criteria (ROC) curves.

PARTICIPANTS AND METHODS
Participants and phenotypes

Participants were from the Study of Addiction: Genes and Environment (SAGE)
(183) which was one of eight Phase 1 studies in the Gene Environment Association
(GENEVA) consortium (http://genevastudy.org/) (184). The SAGE sample was drawn
from three contributing projects, which have been previously described in detail: the
Collaborative Study on the Genetics of Alcoholism (COGA) (185, 186), the
Collaborative Study on the Genetics of Nicotine Dependence (COGEND) (187) and the
Family Study of Cocaine Dependence (FSCD). The FSCD sample did not have body
composition variables available for analysis and was not included in this analysis. All
SAGE participants provided written informed consent for genetic studies and agreed to
share their DNA and phenotypic information for research purposes. All samples were de-
identified and only subjects who consented to health research were included. The
institutional review boards at all data collection sites granted approval for the use of the
data.

Study variables were assessed by interview, using versions of the Semi-Structured
Assessment for the Genetics of Alcoholism (SSAGA) (188, 189). BMI was calculated
from self-reported height and weight. Participants were removed from data analysis if
they had missing data on either height or weight or if calculated BMI was less than 14.5
or greater than 60, as values not in this range were considered data entry errors. Clinical
body weight categories were defined as overweight (BMI > 25), obese class [ (BMI >
30), IT (BMI > 35) and III (BMI > 40). Age was included as age at interview in years. AD
was defined by the SSAGA according to DSM-IV criteria (190) and ND was defined as
having a Fagerstrom Test for Nicotine Dependence score of 4 or greater as assessed from
the SSAGA. Power calculations for genetic effects in the SAGE sample were computed
using the software Quanto from variant frequency, effect-size, odds-ratio and percent
variance accounted for by variants reported in original papers (191).
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Genotyping

Samples were genotyped on the Illumina Human 1M beadchip at the Center for Inherited
Diseases Research at Johns Hopkins University. Data cleaning procedures included
detection of gender mis-annotation and chromosomal anomalies, cryptic relatedness,
population structure, batch effects, and Mendelian and duplication error detection. Details
of quality control procedures have been previously reported (183). To minimize effects of
population stratification, principal components (PC) were constructed using
EIGENSOFT 3.0 (192) and SMARTPCA (193). As recommended by Patterson et al., to
avoid disruption of the eigenvalue structure, SNPs used to construct PC scores were
pruned at r* > 0.7 to correct for dependence between markers (193) and also limited to
autosomes. 577,039 SNPs were used to generate 10 PCs. To circumvent over-fitting, only
PCs that were associated with BMI and indicative of ancestral background were used in
subsequent analyses (192-194).

CNYV calling

The Illumina 1M array has 1,072,820 probes (which includes 23,812 non-SNP “intensity-
only” markers) that were used for CNV detection. Three widely-used programs were
used for CNV calling: CNVPartition (Illumina StudioBead software), PennCNV (195),
and QuantiSNP (196). Genomic waves were adjusted for CNVs called by PennCNV and
QuantiSNP (197). Both PennCNV and QuantiSNP report a metric score for quality
control purposes and as recommended by QuantiSNP documentation, CNV calls with a
Log Bayes Factor (LBF) less than 10 were removed as well as poor quality samples
based on quality control measures for CNV analysis as described in our previous work
(198). CNV calls from the three programs were compared against each other and
Combined CNV (CNVision.org) was used to integrate the calls from the programs (199).
To increase the positive predicative rate (198), only CNVs that were called by at least
two programs were analyzed. Given that calls in centromeric, telomeric and
immunoglobin regions are prone to harbor false positives, CNV calls in those regions
were removed from analyses (195, 200).

Selection of BMI/obesity-associated genetic variation

BMI SNPs were catalogued from a large-scale BMI meta-analyses by Speliotes and
colleagues (63). In brief, the meta-analysis incorporated a two-stage approach in which
GWAS was performed on 249,796 individuals from 46 studies in the first stage and
association was performed in an additional 125,931 individuals from 42 studies in the
second stage. The meta-analyses of both stages identified 32 SNPs reaching genome-
wide significance (p<5x10™). Of the 32 validated BMI SNPs, 15 did not appear on the
SAGE sample Illumina 1M array. Ungenotyped markers were ascertained by two
approaches in order to compare methods: 1) imputation and 2) proxy SNPs. IMPUTE2
was used to phase the observed genotypes and impute unobserved genotypes (201, 202)
using the 1000 Genomes phase 1 reference panel (release June 2011, b37) (203). The
proxy method used the LD structure of the genome to identify highly correlated SNPs
that appear on the array as proxies for the unobserved SNPs. For the 15 SNPs not present
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on the array, proxies were identified using SNP Annotation and Proxy Search V2.1 (204)
except for rs11847697, which did not have a highly correlated proxy SNP (r’<0.7) on the
[llumina 1M array and was therefore not included in SNP-GRSSs constructed by the
proxy method. Haploview version 4.10 was used to verify phase and corresponding proxy
alleles (148, 149). Table 11 details information on the 32 catalogued SNPs.

BMI and obesity associated CNV's were catalogued from research published
between January 2008 and January 2012 via PubMed search. Case reports, typical of
monogenic inheritance, were not included in the catalogue as the focus of the current
study was on common complex obesity. There were 3 BMI (63, 64, 205) and 83 obesity-
associated CNV regions identified from the literature (75-79, 81, 206-209). Table 12
details information on the 84 catalogued CNVs.

BMI SNP genetic risk sum scores

Common BMI-associated SNPs catalogued from the literature (n = 32) (63) were tested
in aggregate by constructing GRSSs. There are primarily two methods for constructing
genetic scores: count and weighted methods. The count method is the sum of the number
of risk alleles, whereas the weighted method incorporates the sum of the number of risk
alleles each weighted by its odds-ratio or effect size. In this study, the weighted scores
were constructed from regression coefficients reported by Speliotes et. al (63). Count and
weighted scores using the proxy method were calculated using the profile option in
PLINK (150). If SNP information was missing in an individual then the scoring routine
imputed expected values based on sample allele frequency. Count and weighted scores
using imputed genotypes were constructed using R version 2.13.1 (210). Furthermore, to
extend existing GRSS methodology, count and weighted scores were constructed using
probabilities of imputed risk alleles (p) genotypes by the equation below. Count scores
were calculated with B = 1 and weighted scores with B = effect-size of each risk allele (A)
reported by Speliotes et. al (63) summed over the number of risk alleles in the score (n).

i B[(2* p(AA))+ p(Aa)] |/ n

CNYV association

In the SAGE sample, CNVs were considered common if they had a frequency of 1% or
greater and determined rare if the frequency was less than 1%. Common CNVs
previously shown to be associated with BMI/obesity were tested individually and in
aggregate by count scores. Rare CNVs were tested in aggregate by count scores
constructed from CNVs 1) previously reported to be associated with BMI/obesity and 2)
not previously associated with BMI/obesity (genome-wide burden of rare variants).
CNVs previously reported to be associated with BMI/obesity were considered the same
region in the SAGE sample if the CNV boundaries shared at least 40% overlap with the
CNYV boundaries reported in the literature. Additionally, since there is evidence that the
positive predictive rate is increased for large CNVs, which is likely due to the increased
number of probes in larger variants, common and rare scores were also constructed from
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only CNVs larger than 100-kb to potentially reduce the number of false positive calls in
the score (198).

Linear models

R (210) was used to fit linear and logistic regression models using established covariates
for BMI including ancestrally informative PCs, sex and age. AD and ND were also
included as covariates since SAGE is a sample selected for these traits. Predictors in
linear models were included in a stepwise process and independent variables were
centered to facilitate interpretation of effects. Interactions between all variables with
significant main effects (n=8) were tested and included in the final model if the p-value
of the interaction was less than the Bonferroni corrected significance level of 0.002.

Prediction of obesity

To test whether the combined model of common and rare variation had clinical utility for
obesity risk prediction, diagnostic efficiency was assessed. One method is to graph a
receiver operator criteria (ROC) curve, which is a plot of the true positive rate
(sensitivity) against the false positive rate (1 - specificity) and calculate the corresponding
area-under-the-curve (AUC). An AUC is the probability that the predictor is greater for
cases than controls (153, 154). An AUC may range from 0.5, non-informative (no greater
than chance), to a maximum of 1.0, perfect discrimination between cases and controls.
Generally, an AUC of 0.80 is suitable for screening while 0.99 is acceptable for diagnosis
(211). Binary logistic regression was used to calculate predicted probabilities of the
models and was used as the predictor to generate ROC curves. Discriminative accuracy
of the model to predict BMI category was estimated by calculating the AUC from ROC
curves using SPSS Statistics version 19.0. The StAR software was used to test for
statistical differences between ROC curves (212).

RESULTS
Phenotypic detail

Complete data on height, weight, AD, ND, genotypes and CNVs were available for 1850
European-American and 498 African-American SAGE participants. Descriptive statistics
for study variables are presented by sex in Table 7. The mean age of participants was
39.8 and ranged from 18 to 77. The average BMI of the sample was 27.5 kg/m”, which is
considered overweight, with 26.9% of the sample being obese (Table 10). There was a
significant race by sex interaction with BMI (t-test=6.84, p=1.01x10"") indicating that
females and African-Americans tended to have greater BMI. Males were more likely to
be AD (*=286.02, p=3.65x10"*") and ND (*=9.36, p=0.002). The age by AD interaction
was also significant (t-test=-3.11, p=0.002) indicating that older subjects were less likely
to be AD. Additional sample characteristics have been previously reported (183).

BMI SNP-GRSS
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The mean number of BMI risk alleles per person for the 32 validated SNPs was 28.5
(SD=3.4) with a range from 18 to 39. The frequencies and distribution are shown in
Figure 5. Power analyses calculated for the SAGE sample indicated 80% power to detect
only one of the 32 BMI-validated variants; rs1558902 in F7O (Table 11) and a sample
size of 177,492 would be needed to detect the smallest of the BMI-SNP effects. Indeed
only two of the 32 BMI-SNPs were significantly associated with BMI in the SAGE
sample after correction for multiple testing which included SNPs in or near F70 and
BDNF. However, the sample size of SAGE has 99% power to detect the 32 variants in
aggregate (GRSS), based upon effect-sizes reported in Speliotes et al. 2010 (63).
Associations of the SNP-GRSSs with BMI are displayed in Table 8 and were highly
significantly associated with BMI (p < 1.11 x10™?). To compare common methods for
computing SNP-GRSSs, as well as extend existing approaches, six GRSSs were
constructed: 1) proxy SNP score by count and 2) by weighted method, 3) imputed SNP
score by count and 4) by weighted method and 5) imputed probability of risk allele score
by count and 6) by weighted method (see METHODS section). In general, the SNP-
GRSSs constructed by weighted methods performed better than count methods (z> 7.3, p
< 0.0001) and increased the percent of variance accounted for by 0.5-0.9%. Additionally,
SNP-GRSSs that were constructed from imputed genotype probabilities performed better
than scores constructed by the proxy method (z > 3.2, p <0.001) and increased the
percent of variance accounted for by 0.1-0.4%. The SNP-GRSS constructed from
weighted imputed allelic probabilities performed the best and accounted for 3% of the
phenotypic variance in BMI.

CNYV association

Eighty-four BMI/obesity-associated CNVs were catalogued from the literature and tested
for association with BMI and obesity in the SAGE sample. Detailed information may be
found in Table 12. Of the reported CNVs in the literature, only 11 had sufficient
information on frequency and effect-size/OR for power calculations and only 2 of these
had 80% power to be detected in the SAGE sample. Power calculations for CNV
aggregate risk scores were not performed because most of the variants reported in the
literature did not cite corresponding effect-sizes or ORs. Of the 84 CNVs catalogued
from the literature, 46 were called in the SAGE sample; 21 of these were common,
including 17 deletions and 4 duplications, and 25 were rare, including 10 deletions and 15
duplications. Of the common CNVs, only a 21-kb deletion on 16p12.3 showed evidence
for association with BMI (B=-0.057, p=0.003, frequency=16.9%). This CNV was also
nominally associated with obese class I (OR=0.743, p=0.022) and II (OR=0.630,
p=0.020). Additionally, two common CNVs were nominally associated with moderate-
obesity (obese class II BMI > 35) in the expected direction. The first was a duplication on
1p36.1 (OR=3.1, p=0.009, frequency 1.2%) which ranged in length from 49.3 to 150.8 kb
with a median value of 66.4 kb. The second was a large deletion on 5q13.2 (OR=1.5,
p=0.048, frequency 7.7%) and ranged in length from 577.5 to 2238 kb with a median
value of 1635 kb. CNV-GRSSs were constructed separately for common and rare
variants. Also, deletions and duplications were tested both together and separately as well
as limited to large CNVs over 100 kb. None of the CNV-GRSSs, common or rare, were
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significantly associated with BMI or obesity in the SAGE sample. Descriptive statistics
as well as association results for CNV-GRSSs are presented in Table 13.

Linear models

Results from linear regression analyses are displayed in Table 9. Ancestry was accounted
for by three principal components PC1, PC4 and PC8 with PC1 distinguishing between
European and African ancestries. PC1 and PC8 were associated with BMI in the full
sample and PC4 was associated with BMI in the European-American sample. The base
model (Model 1), which included the standard covariates, PC1 by sex and age by AD
interactions but no genetic component accounted for 8.3% of the variance in BMI. Model
2, which added the SNP-GRSS and the 21-kb deletion on 16p12.3 to the base model, fit
significantly better [F(3 2335=27.9, p=9.79x"18] and accounted for an additional 3.2% of
phenotypic variance in BMI for a total of 11.5%. Interactions between the covariates and
the SNP-GRSS were not significant except for sex, which suggested that the SNP-GRSS
was equally associated with BMI in European and African-Americans and across age. No
significant interactions between the covariates and the 21-kb deletion on 16p12.3 were
found, which indicated that the CNV was comparably associated with BMI in males and
females, European and African-Americans and across the age range observed in SAGE.

Obesity risk prediction

To test the discriminative accuracy of models to predict obesity classification, ROC
curves were plotted and the corresponding AUCs were calculated. Three sets of nested
models were tested: 1) covariates (molecularly derived ancestry, sex, age, ancestry by sex
interaction), 2) covariates, SNP-GRSS and interaction with sex and 3) covariates, SNP-
GRSS and three obesity-associated CNVs (the 21 kb deletion on 16p.12.3, the 66 kb
duplication on 1p36.1, and the 1440 kb deletion on 5q13.2). Table 10 displays statistics
from ROC curve analysis by BMI category. AUC estimates indicated the models
significantly predicted overweight and obesity classification with maximum
discriminative ability when employing model 3 to predict class III obesity (AUC = 0.750,
95% C1=10.702, 0.7971]). Models that included genetic information had significantly
greater AUCs than models only including covariates (Table 10).

DISCUSSION

We have constructed an integrated model of common and rare variation catalogued from
the literature and demonstrated its association with BMI in 1850 European-American and
498 African-American SAGE participants. This is one of the first studies to incorporate
both SNPs and CNVs into an integrated genetic analysis for BMI and obesity risk
prediction. The best fitting model included standard covariates, SNP-GRSS and a 21-kb
deletion on 16p12.3, and accounted for 11.5% of the phenotypic variance in BMI
(p=3.34x107%.

The effects of BMI-associated SNPs were incorporated into the integrated model
via an aggregate risk score. There were six SNP-GRSSs constructed from 32 validated
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BMI-associated SNPs; count and weighted methods were compared. The weighted score
constructed from imputed probabilities of risk alleles performed the best and was highly
associated with BMI (p=4.3x107"%), accounting for 3% of the phenotypic variance.
Comparisons of SNP-GRSS methodology indicated the variance in BMI accounted for
was increased by a third when weighted methods and imputed probabilities of risk alleles
were incorporated. These findings highlight the value of large-scale meta-analysis
validation efforts to characterized effect sizes for genetic variants. Our results suggest
that incorporating well-characterized effect sizes into GRSSs as well as utilizing
genotypic probabilities from imputation procedures may improve BMI prediction
algorithms. Future research should test these methods for improved risk prediction in
other complex traits and diseases.

Although there were 84 BMI/obesity-associated CNVs catalogued from the
literature, only 46 were detected in SAGE and only one was significantly associated with
BMI. Speliotes et al., first reported the deletion on 16p12.3 in a large-scale BMI meta-
analysis because a common BMI-decreasing allele was highly correlated with the same
21 kb deletion (63). In the present study, the CNV was also moderately associated with
obesity classes I and II. The closest gene to the deletion is GPRC5B, which codes for a
G-protein coupled receptor (family C group 5 member B); this receptor is of unknown
function, and resides 50 kb upstream of the CNV (RefSeq, July 2008). Our results
provide further evidence of a common CNV associated with body composition and
suggest follow-up functional studies are warranted to verify its relevance to mechanisms
underlying body composition.

Additionally, two common CNV's were nominally associated with moderate
obesity (obese class II BMI>35) in the expected direction. Both of these CNV's were
originally reported to be associated with obesity in Jarick et al. (208). The first was a
duplication on 1p36.1 and was originally reported to be associated with early-onset
extreme obesity in 423 parent-offspring trios (208). The two closest genes were found
within 50 kb downstream: SYF2, which codes for a nuclear protein which may be
involved with pre-mRNA splicing, and C/orf63, an open reading frame (RefSeq, July
2008). The second common CNV of nominal significance with moderate obesity in the
SAGE sample was a deletion on 5q13.2 (OR=1.5, p=0.048). This CNV was reported to
be associated with early-onset extreme obesity in 423 parent-offspring trios and in a case-
control sample of 453 extremely obese children/adolescents and 435 normal-weight and
lean adults (208). This large deletion encompasses numerous genes, which are detailed in
Supplemental Table 2.

With the exception of the three aforementioned CNVs, our results did not yield
additional support for previously reported BMI/obesity-associated CNVs, either
individually or in aggregate. There are several potential reasons for this. First, it is
possible that the effect-size and frequency of variants were not large enough to be
detected in the SAGE sample, even when examined in aggregate. Given the limited
information on effect-sizes of the CN'Vs reported in the literature, assessing the power to
detect these variants in the SAGE sample is not straightforward. Additionally, it is
conceivable that the collections of CN'Vs examined here contained a greater number of
false positives than true variants, which masked the potential for replication by risk
scores. In fact, only 4 of the 84 CNVs identified from the literature have been associated
with BMI/obesity in multiple studies (Supplemental Table 2). Large-scale BMI/obesity-
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associated CNV meta-analyses are needed to validate variants and to characterize the
magnitude of their effects. Another issue with CNV analysis is that the CNV calling
methodologies from microarrays are limited, as most SNP-arrays were designed to
measure common variation across the genome and not to primarily detect CNVs (213,
214). Furthermore, the resolution of arrays to call CNVs, as well as their boundaries, is
limited by probe density and the use of different algorithms when applied to the same
data may give inconsistent results (198, 215-221).

We also assessed whether the integrated models were clinically useful for obesity
risk prediction. Our results indicated statistical discriminative ability to predict obesity
classification from a model including standard covariates, SNP-GRSS and three obesity-
associated CNVs (the 21 kb deletion on 16p.12.3, the 66 kb duplication on 1p36.1, and
the 1440 kb deletion on 5q13.2). AUC estimates showed the models significantly
predicted overweight and obesity classification with maximum discriminative ability
when predicting class III obesity (AUC = 0.750, 95% CI =[0.702, 0.7971]). Previously,
we had constructed a SNP-score by the count method comprised of 56 genome-wide
significant as well as suggestive variants to predict obesity in the Molecular Genetics of
Schizophrenia control sample and also found maximum discriminative ability when
predicting class I1I obesity (AUC = 0.697, 95% CI =[0.663, 0.731]) (180). The present
findings represent a 5% increase in the AUC although fewer markers were used but
CNVs were also included. Other studies have used SNP-GRSS to predict obesity, which
have incorporated 8-32 SNPs with corresponding AUC estimates ranging from 0.575 to
0.597 (63, 140, 142, 143). This study is one of the first to incorporate both SNP and CNV
information into an integrated model predicting obesity classification. Although the AUC
estimates were statistically significant, they were below 0.8, the threshold used in clinical
practice for screening. However, the ability to predict morbid obesity (class III)
approached clinical criteria for a screening test and performed better than previous
genetic risk models predicting obesity.

There are several possible extensions of the work presented here. First, SAGE
participants consisted of a selected sample for substance-use behaviors. It is possible that
the findings reported here are not generalizable to the American population at large.
Although we have included alcohol and nicotine dependence as covariates in all analyses,
research has shown these phenotypes to have complex relationships with body
composition (113, 222), and this may complicate interpretation to the general adult
population. Additionally, despite incorporating aggregate risk scores, which analyze
collections of variants simultaneously to increase power and reduce problems associated
with multiple testing, it is possible that the SAGE sample may still lack adequate power
to confirm associations in the literature. It is important to note, however, that inclusion of
variants, which are not well validated in such scores, can reduce the efficiency of this
method. It is likely that the strong association of the SNP-GRSSs and not the CNV-
GRSSs with BMI is a result of the fact that the BMI-SNPs have been validated by large-
scale meta-analysis while most of the CNVs have not. Therefore, future research should
test for associations in both larger and population-based samples.

For many of the BMI/obesity-associated loci, it has yet to be determined if they do
indeed represent the causative locus or if they are merely correlated with the causative
variant. Fine mapping efforts are needed and will likely identify lower-frequency
variants, which are typically not genotyped on commercial GWAS-arrays. As such, a
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further extension of the work presented here is to include lower-frequency SNPs and
INDELSs identified by large-scale exome and genome sequencing efforts. Such studies are
underway and include the UK10K project, a whole-genome sequencing study of 4,000
individuals and exome sequencing of an additional 6,000 individuals including 2,000
with extreme obesity phenotypes (83).

Furthermore, an important extension of an integrated model of BMI and obesity is
to incorporate the moderating effects of the environment. Energy balance affects body
composition, and research indicates that physical activity and food intake account for a
significant portion of the variance in BMI, with estimates ranging from 5 to 10% (159-
162). Additionally, at least two of the BMI-validated SNPs exhibit gene by environment
interactions (GxE) (163, 165, 167, 173, 174, 223). For example, a large meta-analysis
found that in physically active adults the effect of the F7O risk allele on obesity was
attenuated by 27% (224). Given the considerable impact of the environment on body
composition, future research needs to incorporate environmental variables into models of
disease and risk prediction. Despite the potential limitations of the current study, this
work provides a framework for integrating common and rare variation as both an
alternative form of replication of genetic effects as well as for risk prediction of complex
traits.
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TABLES AND FIGURES

Figure 5: Frequency of BMI risk alleles per person (SAGE)
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Note: BMI = body mass index kg/m’.
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Table 7: Descriptive statistics by sex in the SAGE sample

Group Males Females
Mean SD Mean SD
Age 40.6 9.4 393 8.6
BMI 27.7 4.7 27.5 7.0
N % N %
1011 43.7% 1337 56.3%
Obese 256 25.3% 376 28.1%
AD 672 66.5% 420 31.4%
ND 531 52.5% 617 46.1%

Note: Age = age at interview, BMI = body mass index kg/m?, Obese = BMI > 30 kg/m?,
AD = alcohol dependence, ND = nicotine dependence.
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Table 8: Comparison of GRSSs constructed by count and weighted methods

Mean

Estimate

GRSS Method D) (SE) p-value R’

1. Proxy Count 0.450 15.99 7.18 9.07x10"°  0.022
(0.06) (2.22)

2. Proxy Weighted 0.063 12622 856  2.05x10" 0.027
(0.01) (14.75)

3. Imputed Count 0.447 16.28 7.16  1.11x10™" 0.022
(0.05) (2.27)

4. Imputed Weighted 0.062 128.75 851  2.94x10" 0.030
(0.01) (15.12)

5. Imputed Probability Count 0.894 8.17 721 733x10"° 0.022
(0.11) (1.13)

6. Imputed Probability Weighted 0.124 64.42 8.54  2.43x10™" 0.031
(0.02) (7.55)

Note: GRSS = genetic risk sum score, Mean = mean score for GRSS, Estimate =
regression coefficient for GRSS, Count = GRSS constructed from the summation of the
number of risk alleles, Weighted = GRSS constructed from the number of risk alleles
weighted by effect-sizes reported in Speliotes et al. 2010, SNP = single nucleotide
polymorphism, Proxy = highly correlated substitute SNPs were used for variants not
directly genotyped on the array, Imputed = genotypes were inferred from 1000 Genomes
reference panel, Imputed probability = probability of genotypes inferred from 1000

Genomes reference panel.

44

www.manaraa.com



Table 9: Linear models predicting BMI in the SAGE sample

Model Estimate SE T p-value
Model 1: Covariates [F o335 = 23.66, p-value = 4.58x10°°, R* = 0.083]
Intercept 27.63 0.12 227.36 <2x107°
PC1 -98.82 8.67 -11.40 2.40x10%
PC4 10.54 7.63 1.38 0.167
PC8 -30.20 9.59 -3.15 0.002
Sex -0.46 0.26 -1.75 0.081
Age 0.04 0.01 3.31 9.45x10™
AD -0.20 0.07 -2.81 0.004
ND -0.06 0.06 -0.91 0.361
PC1*Sex -122.29 17.28 -7.08 1.92x10™"*
Age*AD -0.02 0.01 -3.60 3.20x10™
Model 2: Covariates, GRSS & CNV [F 12335 = 25.34, p-value = 3.34x10”*, R* = 0.115]
Intercept 27.63 0.12 231.26 <2x107°
PC1 -110.22 8.72 -12.63 1.89x107
PC4 10.14 7.50 1.35 0.176
PC8 -31.53 9.43 -3.34 8.36x10™
Sex -0.43 0.26 -1.65 0.099
Age 0.04 0.01 3.35 8.15x10™
AD -0.20 0.07 -2.81 0.005
ND -0.07 0.06 -1.14 0.253
PC1*Sex -131.38 17.26 -7.61 3.91x10™
Age*AD -0.02 0.01 -3.41 6.59x10™
SNP-GRSS 62.44 7.62 8.19 4.30x107°
Sex*SNP-GRSS 44.37 15.19 2.92 0.003
Del 16p12.3 -0.57 0.32 -1.78 0.075

Note: BMI = body mass index kg/m’, GRSS = genetic risk sum score, PC = principal
component score reflecting ancestral background, Age = age at interview, AD = alcohol
dependence, ND = nicotine dependence, CNV = copy number variation, Del = deletion.
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Table 10: Discriminative accuracy of covariates, SNP-GRSS and CNV predicting BMI
category in the SAGE sample

Model AUC 95% CI Asy. Sig.

Overweight: n = 1443 (61.4%)

1. Covariates 0.679 [0.657,0.700] 2.68x10™*

2. SNP-GRSS 0.692%*%*  [0.671,0.714]  9.23x10™°

3. CNV 0.694***  [0.672,0.715] 1.27x10™°
Obese Class I: n =632 (26.9%)

1. Covariates 0.621 [0.594,0.647] 2.74x10™"

2. SNP-GRSS 0.661%**  [0.637,0.686] 2.77x10™

3. CNV 0.662*%**  [0.638,0.687] 1.12x10™
Obese Class II: n =264 (11.2%)

1. Covariates 0.648 [0.610,0.685] 5.22x107"

2. SNP-GRSS 0.681% [0.646,0.716]  6.97x10™

3. CNV 0.690**  [0.656,0.725] 5.58x10™*
Obese Class III: n =106, (4.5%)

1. Covariates 0.711 [0.660,0.762]  1.97x10"

2. SNP-GRSS 0.741% [0.692,0.790]  4.81x10™"7

3. CNV 0.750**  [0.702,0.797] 3.15x10"®

Note: BMI = body mass index kg/m”, SNP = single nucleotide polymorphism, SNP-
GRSS = genetic risk sum score constructed from imputed probability of carrying 32
BMI-associated SNPs by the weighted method, CNV = copy number variation, AUC =
area-under the receiver operator criteria curve, Asy. Sig. = asymptotic significance,
Overweight = BMI > 25 kg/m?, Obese I = BMI > 30 kg/m?, Obese Il = BMI > 35 kg/m?,
Obese 111 = BMI > 40 kg/mz, Covariates = PC1, PC4, PC8, sex, age, AD, ND, PC1*sex,
age*AD, PC = principal component score reflecting ancestral background, Age = age at
interview, AD = alcohol dependence, ND = nicotine dependence, * = difference in AUC
of the Model and Model 1 (Covariates) is p <0.05, ** = difference in AUC of the Model
and Model 1 (Covariates) is p <0.01, *** = difference in AUC of the Model and Model 1
(Covariates) is p <0.001.
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Common and rare CNV-GRSS
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Chapter 4: Association of common polygenic variation with
body mass index across adolescent development: A
longitudinal twin study

Adapted from: On the association of common polygenic variation with body mass index across
adolescent development: A longitudinal twin study. Roseann E. Peterson, Bradley T. Webb,
Elizabeth C. Prom-Wormley, Judy L. Silberg, Lindon J. Eaves, and Hermine H. Maes.
Presentation. The 42nd Annual Meeting of the Behavior Genetics Association. June 24th, 2012.
Edinburgh, Scotland, UK.

ABSTRACT

A dramatic increase in the prevalence of obesity in developed countries and the numerous
adverse consequences associated with elevated body weight in both children and adults
highlight the necessity of research that aims to understand the genetic and environmental
trajectories of relative body weight. Genome-wide association studies of body mass index
(BMI) using large-scale adult samples have yielded 32 robustly associated genetic
variants. Further research should address when during human development these variants
begin to influence body weight. Therefore, we sought to utilize a developmental twin
study design in order to determine the genetic and environmental architecture of BMI by
variance components analysis and assess the effects of adult-validated BMI-SNPs across
adolescence. Data analyses included 2,794 twin participants from the Virginia Twin
Study of Adolescent Behavioral Development (ABD) ranging in age from 8 to 18 years
old. BMI was calculated from weight and height for up to three waves of data collection.
Variation in BMI at each age, as well as covariation across the age range was modeled
using the independent pathway (IP) models which includes both genetic and
environmental common and time-specific factors. BMI was found to be highly heritable,
accounting for 74-91% of the variance over the course of adolescent development. Our
best-fitting model indicated multiple genetic factors that contributed to BMI liability,
including a genetic factor that loaded across development, a second common genetic
factor that loaded later in adolescence and time-specific genetic factors important in mid-
adolescence. Additionally, shared environmental effects were found to account for
significant portions of the phenotypic variance (1-18%) for ages 11-16 in females and
ages 8-14 in males. A unique environmental factor accounted for 2-13% of the
phenotypic variance across development. To understand the importance of adult BMI-
associated genetic variants across adolescent development, a genetic risk sum score
(GRSS) was tested as an effect on latent genetic factors as well as on mean BMI.
Preliminary results, assessed on a sub-sample of ABD twins, indicated that the GRSS
was best modeled as an effect on mean BMI at each age group suggesting association
across development with the magnitude of the effect differing at each time point
considered. The GRSS accounted for 1-2.3% of the phenotypic variance in BMI across
adolescence. These results, although preliminary, merit future research, which considers
pubertal stage, both in the full ABD sample and additional replication cohorts.
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INTRODUCTION

Recent years have seen a dramatic increase in the prevalence of obesity in developed
countries (32), with reports from the National Center for Health Statistics indicating over
35% of American adults and 17% of children and adolescents are obese (2). Childhood
obesity is a serious public health problem that is associated with both immediate and
long-term health consequences including increases in blood pressure, cholesterol and
insulin resistance as well as social and psychological problems (22-25). Furthermore,
research has demonstrated that obese children are more likely to become obese adults
(26-30), which is associated with considerable morbidity and mortality including many
leading causes of death in developed nations such as diabetes, heart disease and some
types of cancer (2, 30, 225). Adolescence represents an important developmental period
in which to study obesity because during this time there are rapid changes in physical
growth, maturation, and nutritional needs as well as many health-related behaviors are
established. Further research is warranted to understand the dynamic process of genetic
and environmental influences on BMI from adolescence into adulthood.

Twin and family studies have shown consistently that relative body weight is
under considerable genetic influence both in children and adults, with heritability
estimates ranging from 50% to 90% (35, 51-54). There have been numerous twin studies
examining genetic and environmental influences on adolescent BMI and obesity (35, 54,
55, 57-60, 226-241). However, only five of these studies have reported across the entire
time-span of adolescence into adulthood (54, 55, 231, 238, 240). Two large twin study
meta-analyses on BMI from birth to young adulthood have reported on over 12,000 twin
pairs and found that the contribution of additive genetic effects (A) tend to increase over
time while environmental factors common to family members (C) is greatest in childhood
but diminishes in adolescence between the ages of 13 and 17 (54, 55). While impressive
on scale, these studies do not address the architecture of these effects (i.e., number of
factors, persistence across time). Three other studies that reported across adolescence,
while longitudinal in design, applied only limited models (Cholesky parameterization),
which do not quantify the relative proportion of factors that are common across time
versus those that are time specific (242, 243) or examine variance components on rate of
BMI change over time (244, 245). Therefore, further twin studies examining alternative
models of the genetic and environmental structure across adolescence and into adulthood
are warranted.

Genome-wide association studies (GWAS) of BMI using large-scale adult
samples have yielded 32 robustly associated genetic variants (63-65) accounting for
1.45% of the phenotypic variation in BMI (63). In a meta-analysis by Speliotes et al., the
adult BMI-associated variants were also tested for association in sub-samples of children
and adolescents. Based on case/control studies of extreme childhood obesity (n = 1,301-
12,891), the authors found nine variants associated with obesity (after correction for
multiple testing), including single nucleotide polymorphisms (SNP) in and near F70,
TMEM 18 and MC4R; in population based samples (n = 354-8,540), three obesity-
associated variants were identified in or near POMC, CADM?2 and TNNI3K; and in
parent-child trios with one extreme obese child, the transmission disequilibrium test
(TDT) indicated that only alleles in FTO were significantly over-transmitted to obese
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children, however, 24 of the 32 effect sizes were in the expected direction (63).
Furthermore, a study of 1,097 extreme obese and 2,760 lean controls aged 2-18, found 9
of the 32 adult BMI variants associated with increased risk of obesity including variants
in and near FTO, TMEM18, NRXN3, MC4R, SEC16B, GNPDA2, TNNI3K, QPCTL, and
BDNF and also reported 28 variants that were directionally consistent (246). Although,
somewhat underpowered, these results indicate adult BMI-associated variants may also
be important in childhood and adolescent obesity. A recent GWAS meta-analysis of
5,530 obese and 8,318 control children and adolescents aged 2-18, Bradfield et al.
reported nine variants significantly associated with obesity. Of these, 7 were previously
shown to be associated with adult BMI (FTO, TMEM18, POMC, MC4R, FAIM?,
TNNI3K and SEC16B) and two were in novel loci for childhood obesity (OLFM4 and
HOXBS5) (247).

While the aforementioned studies implicate a number of genetic variants
associated in childhood, adulthood and potentially across the lifespan, they do not address
when in development genetic effects begin to influence relative body weight. Therefore,
we sought to utilize a developmental twin study design in order to determine the genetic
and environmental architecture of BMI by variance components analysis and assess the
effects of adult-validated BMI-SNPs across adolescence into adulthood. BMI was
calculated from weight and height collected on up to three waves of data collection and
ages ranging from 8 to 18 in 2,794 twin participants from the Virginia Twin Study of
Adolescent Behavioral Development (ABD).

METHODS
Participants

Participants were from the Virginia Twin Study of Adolescent Behavioral Development
(ABD), a longitudinal population-based twin study of adolescent psychopathology.
Ascertainment and data collection have been described previously in detail (248-250). In
brief, Caucasian twins aged 8 to 17 were recruited through Virginia schools and were
followed-up every 18 months for up to three waves of data collection. Of 1,894 eligible
Virginia families, 1412 participated in the first wave of data collection (74.5%); 1,047 of
1,302 families that continued to meet the age and Virginia residence requirements
completed a second home interview (80%); 628 of 777 eligible families (81%)
participated in a third wave of assessment. BMI was calculated from weight and height
measurements were collected by trained field interviewers during home interviews who
followed a standard protocol using portable scales and tape measures and was available
for 2,794 of the ABD twin participants (54% female). For sufficient number of
observations over time, age was binned to create five time points: 8-10, 11-12, 13-14, 15-
16 and 17-18. If BMI data was collected more than once within a time interval then the
average of the assessments was used.

Genotyping

53

www.manaraa.com



In total, there were 913 participants from 639 families (291 twin pairs, 348 singletons)
genotyped on the [llumina Human 660 array. Our quality control procedures removed
2619 monomorphic SNPs, 19984 markers with minor allele frequency less than 1%,
23114 SNPs with greater than 1% missing data and 14 SNPs which deviated from Hardy-
Weinberg Equilibrium (p <10°). Following these exclusions 497,153 genotyped markers
remained for analysis. To reduce the effects of population stratification, principal
components (PC) were constructed using EIGENSOFT 3.0 (192) and SMARTPCA
(193). Because the ABD sample includes related individuals, standard PC analysis s
subject to bias. Therefore, the HapMap3 reference panel (988 individuals from 11 human
populations) (251) was used to determine SNP weights for each eigenvector and the ABD
data was projected onto these values to generate PCs. As recommended by Patterson et
al., SNPs used to construct PC scores were pruned at r* > 0.7 to correct for dependence
between markers, thereby avoiding disruption of the eigenvalue structure (193). A total of
254,680 autosomal SNPs were used to generate 10 PCs. To circumvent over-fitting, only
the first two PCs, distinguishing European from African ancestry, were used in
subsequent analyses (192-194).

Genetic risk sum score

BMI SNPs were catalogued from a large-scale BMI meta-analyses by Speliotes et al.
(63), with 32 SNPs identified as reaching genome-wide significance (p<5x10*). Of the
32 validated BMI SNPs, 15 did not appear on the ABD Illumina 660 array. Therefore,
highly-correlated SNPs (r*>0.7) that appeared on the array were used as proxies for
ungenotyped SNPs. Proxies for the missing SNPs were identified using SNP Annotation
and Proxy Search V2.1 (204), except rs11847697 and rs13107325, for which proxies
were unavailable. Haploview v4.10 was used to verify phase and corresponding proxy
alleles (148, 149). BMI-associated SNPs were tested in aggregate by constructing
GRSSs. There are primarily two approaches for constructing genetic scores: count and
weighted methods. The count method is the summation of the number of risk alleles,
whereas the weighted method incorporates the sum of the number of risk alleles each
weighted by its odds-ratio or effect size. This study utilized the weighted method and
constructed GRSS from regression coefficients reported by Speliotes et. al (63). GRSSs
were calculated using the profile option in PLINK (150).

Variance components modeling

The use of family data allows the particular sources of trait variance to be estimated. In
the classical twin design, covariances of MZ and DZ twins are used to estimate the
magnitude of genetic and environmental causes of family resemblance (252). This
methodology is premised upon monozygotic, or “identical”, twins (MZ) sharing all of
their genes, while dizygotic, or “fraternal”, twins (DZ) sharing half of their genes on
average, and MZ and DZ twins sharing environmental experiences to the same extent
(equal environment assumption). Following this logic, the correlation between genetic
components is modeled as1.0 for MZ twins and 0.5 for DZ twins. Under the assumptions
of random mating, no genotype-environment correlation or interaction, and equal
environments for MZ and DZ twins, a greater similarity between MZ versus DZ twins is
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attributed to additive genetic effects (A). Common environmental effects, as defined in
biometrical twin modeling, refer to environmental influences that make family members
more similar to each other. Therefore, by definition, these influences correlate 1.0
between both MZ and DZ twins. These shared environmental influences (C) will
contribute to twin similarity in both MZ and DZ twins and will tend to increase DZ
correlations relative to MZ correlations. However, non-additive genetic effects, known as
dominance (D), tend to reduce the DZ correlation relative to MZ twins. The correlation of
D is modeled as 1.0 between MZ twins and 0.25 for DZ twins. An additional source of
variance is the unique environment (E), which includes factors in the environment that
are not shared within families as well as random measurement error. Unique
environmental influences are uncorrelated between co-twins and have the effect of
decreasing the covariance between siblings. Furthermore, the principles of variance
decomposition for the univariate case may be extended to estimating the covariance
structure between multiple variables.

One approach to partitioning variance is to use structural equation modeling
(SEM) (system of linear equations) and path analysis, which allows for flexible
specification of models that include both latent (unobserved) and measured variables
(253). In this study, we used SEM to examine the genetic and environmental architecture
of BMI across adolescence development. As depicted in Figure 8, independent pathway
(IP) models were specified to partition phenotypic variance into genetic and
environmental factors that were shared across development as well as components that
were time specific (243, 253). These models allow for the contributions of the common
factors on the phenotypes measured over time to be different for each of the sources of
variance, hence the name ‘independent pathways’. ACE models, as opposed to ADE
models, were fit as previous research has found shared environment to be important in
adolescent BMI (35, 53, 54, 231-236, 238, 241, 254, 255) and upon inspection of the
ABD data, the DZ correlations tended to be greater than half MZ correlations which is
suggestive of common environmental effects. I[P model fitting began with two common
factors for each source of variance, A, C and E, along with specific A, C and E at each
time point. To simplify the full model, A and C common and specific factors and E
common factors were dropped one-by-one from the model. Specific unique
environmental effects were not dropped as these include errors of measurement. Variance
components models were fit separately by sex and parameters were estimated by full
information maximum likelihood using OpenMx (256) in R (210). The log likelihood (-
2LL) and Akaike’s Information Criterion (AIC) were used to assess goodness-of-fit and
relative parsimony of alternative models.

The collective effect of adult BMI-associated genetic variants on BMI across
adolescent development was tested via a GRSS (see METHODS Genetic risk sum score).
The GRSS was added to the best fitting ACE-IP model and was tested as an effect on
mean BMI at each time point and separately as an effect on each of the latent genetic
factors (Figure 12). To reduce the effects of population stratification, PC scores
representing ancestral background were included as covariates in the models as an effect
on the mean. As these models include covariates as definition variables, only twins with
non-missing values may be used in the analyses. As a consequence, the effective sample
size was reduced considerably (Table 18). However, including phenotypic data on
ungenotyped relatives has been shown to improve statistical power to detect effects of
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genetic variants, as a finite mixture distribution may be used to estimate the probability of
genotypes of those ungenotyped (257, 258). Although applying the mixture distribution
approach represents the ideal method for this data, we tested the effect of the GRSS by
two alternative methods in order to generate preliminary results. First, analyses were
performed on an unrelated subset of the ABD twin sample for whom genotyping data was
available. Path estimates of the best fitting IP model from the full twin sample were
entered as fixed effects while the means, the regression on the PCs and the effects of the
GRSS were estimated on mean BMI at each age and separately as an effect on each of the
latent genetic factors. Second, we used the parameterization of the best-fit IP model from
the full sample but allowed the ACE variance components to be estimated as well as the
effect of the GRSS on a sub-sample of ABD twin pairs that were both genotyped. For
each method, ten models were evaluated for each sex. Model I estimated the means at
each age for the specified model (best-fit IP model) and Model II included the effect of
PC covariates on Model I and was considered the baseline for subsequent model
comparisons. Model III-VII added the effect of the GRSS separately at each age while
Model VIII included the effect at all ages. Model IX included the effect of the GRSS on
the first latent common genetic factor and Model X included the effect on the second
common genetic factor. The significance of the score was evaluated by comparing
models that included the effect of the GRSS and those without and goodness-of-fit of
alternative models were assessed by -2LL and AIC.

RESULTS
Descriptive statistics

Means and variances of BMI across age groups are presented by sex and zygosity in
Table 14. Females tended to have greater BMI than males at younger ages, while mean
BMI for males and females were similar in older age groups (Figure 6). As depicted in
Figure 7, the phenotypic variance of BMI tended to increase over time in both males and
females, with the largest variance at age 17 for females.

Twin model fitting

The full IP model included two common factors for A, C and E components as well as
specific A, C and E components for each of five time points across adolescent
development (age 8-18). Model fit and parameter estimates for full and reduced models
appear in Table 15 and Table 16. In both females and males, the second C factor and all
C specifics could be dropped without significant loss in model fit (Model Il.c). According
to AIC, the best fitting parameterization of the common C factor featured loadings on age
groups 11-16 in females and 8-14 in males (Model Il.e). Except for the loadings on age
11 in females, none of the common A factor loadings could be dropped (Model III).
However, some of the specific A components could be dropped including age groups 8
and 17 in females and males and, additionally, age group 13 in males (Model V).
Furthermore, the second E factor could be dropped in both sexes (Model IV) without
significant loss in model fit. Partial path diagrams for best-fit models are displayed in
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Figure 9 and Figure 10. BMI was found to be highly heritable, accounting for 74-91% of
the variance over the course of adolescent development. The total heritability and
proportion of heritability due to common and specific genetic factors for BMI across
adolescence are displayed in Table 17 and Figure 11. The proportion of phenotypic
variance accounted for by common and specific ACE factors are displayed by age in
Figure 11. In summary, the first common genetic factor, which loaded on all time points,
tended to account for less of the variance over time from 88 to 41% in females and 74 to
39% in males while the second common genetic factor tended to increase over time from
15 to 49% between ages 13-17 in females and 8 to 50% between ages 11-17 in males. At
age 11, 18% and 23% of the heritability was due to a specific genetic factor in females
and males, respectively; 14% and 0% at age group 13; and 1% and 8% at age group 15.
Thus, the majority of the genetic variance is accounted for by factors that contribute
across the adolescent timeframe. Additionally, a common C factor accounted for 2-18%
of the phenotypic variation in females from age 11 to 16 and 1-6% in males from age 8 to
14. Furthermore, a common E factor was significant across development and accounted
for 2-6% of the phenotypic variance in females and 5-13% in males and specific E factors
at each time point accounted for 2-10% of the variance.

Genetic risk sum score (GRSS)

To understand the importance of adult BMI-associated genetic variants across adolescent
development, variants were tested collectively by using a GRSS with an effect on each of
the common genetic factors and on mean BMI at each age by two alternative methods.
The first method assessed the effect of the GRSS in a subsample of unrelated ABD twins
(359 females, 258 males) against the background of fixed genetic and environmental
factors estimated from the full twin sample (2,794 twins, 54% female). The best fitting
model according to goodness-of-fit statistics for both females and males, was Model VIII,
which included the effect of the GRSS at each age. Results of model fitting appear in
Table 18. The regression coefficients for the GRSS at each age ranged in effect from 0.05
to 1.7 kg/m’ change in BMI and were in the expected direction (positive, BMI
increasing). Next, we assessed the effect of the GRSS while simultaneously estimating
genetic and environmental factors in a subsample of genotyped ABD twin pairs (242
female pairs, 152 male pairs). In agreement with the first method, the best fitting model,
according to goodness-of-fit statistics, was Model VIII, which included the effect of the
GRSS at each age. The results of model fitting are reported in Table 19. The regression
coefficients for the GRSS at each age are in the expected direction and ranged in effect
from 0.5 to 2.4 kg/m” change in BMIL. However, the best fitting model according to the
AIC, which accounts for model parsimony, differed for males and females; for females,
Model VI was the best-fitting model, which only included the effect of the GRSS at age
15 (-0.55 change in BMI); for males, the best-fitting model was IX, which included the
effect of the GRSS on the first genetic factor (0.74 kg/m? change in BMI). Linear
regression indicated that the GRSS accounted for 1-2.3% of the phenotypic variance on
BMI across adolescence.
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DISCUSSION

The purpose of this study was to utilize a developmental twin study design in order to
determine the genetic and environmental architecture of BMI by variance components
analysis and to assess the effects of adult-validated BMI SNPs across adolescence.
Consistent with other twin and family studies (35, 54, 55, 57-60, 226-241), BMI was
found to be highly heritable in the ABD sample, accounting for 74-91% of the variance
over the course of adolescent development.

To date, only limited models of the genetic and environmental architecture of
BMI have been applied across adolescent development (35, 36, 53). To extend results
reported in the literature, independent pathway models were fit to examine genetic and
environmental factors, which persisted across time, as well as, time specific. The best-
fitting model indicated multiple genetic factors that contributed to BMI liability,
including a factor that loaded across development, a second common genetic factor that
loaded later in adolescence, and time-specific genetic factors important during mid-
adolescence (ages 11 to 15). It is possible that these specific genetic components are
reflective of genetic effects related to puberty. Puberty stage has been shown to be highly
heritable (259) and to have a significant effect on BMI variance, with higher genetic
variance at later pubertal stages (240). The findings reported here do not incorporate
effects of puberty and are likely confounded by the use of chronological age without
consideration of puberty stage. Accordingly, our forthcoming analyses will incorporate
the effects of puberty on adolescent BMI development.

Our results indicated that shared environmental effects accounted for a portion of
the phenotypic variance in adolescent BMI (1-18%), although timing differed between
the sexes, with significant effects until ages 14 and 16 in males and females, respectively.
These results were consistent with other twin studies which report environmental effects
shared within families to be important for BMI, as well as, confirming these effects
diminished in adolescence between the ages of 13 and 17 (54, 55). Additionally, our
results indicated a common unique environmental factor, which loaded across
development, accounting for 2-13% of the phenotypic variance in BMI. These results
suggested that there were environmental factors specific to individuals that persisted
across time to influence body composition. These results further supported the
importance of environmental factors, both within families and specific to individuals,
contributing to the progression of relative body weight. Previous research has identified
specific environmental factors shown to influence obesity including food selection,
physical activity, socioeconomic status and childhood abuse (260-268). For example, the
heritability of BMI has been shown to decrease with high physical activity (260-262).
Future research should incorporate known environmental moderators into variance
decomposition modeling to further clarify the genetic and environmental architecture and
tracking of relative body weight across the lifespan.

In addition, to investigate the effect of adult BMI-associated genetic variants in
adolescence, variants were tested as a collection by a GRSS with an effect on each
common genetic factor and on mean BMI at each age by two alternative methods. To the
best of our knowledge, this is the first study to examine the association of adult BMI-
variants across adolescence assessed within the context of genetic and environmental
components determined by variance decomposition. Preliminary results, evaluated using
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subsamples of ABD twins, indicated that the GRSS was best modeled as an effect on
mean BMI at each age group, suggesting association across development, with the
magnitude of the effect differing at each time point considered and ranged in effect from
0.05 to 2.4 kg/m” change in BML

The initial GRSS results reported here should be interpreted in light of several
limitations. First, since only a portion of the ABD sample was genotyped, association
analyses were performed on a reduced sample of twins, limiting our power to detect
significant associations. Despite reported test-statistics reflecting improvement in model-
fit with the addition of genetic scores, confidence intervals on the corresponding effect-
sizes were large and often inclusive of zero, indicating the need for larger sample sizes to
resolve the nature of these effects. The inclusion of DZ twin pairs of opposite sex (DZo)
in subsequent analyses would increase the effective sample size, as well as, allow for
statistical examination of sex effects. Indeed, genetic epidemiology studies of adolescent
body composition support the presence of sex limitation (51, 54, 56-60), as do molecular
genetic studies (269, 270). Additionally, research indicates that including phenotypic data
on ungenotyped relatives improves statistical power to detect effects of genetic variants,
as a finite mixture distribution may be used to estimate the probability of unobserved
genotypes in untyped individuals (257, 258). Thus, extensions to this work will not only
include DZo twins to track sex effects in BMI across adolescence, but also incorporate
mixture distribution methodology, to increase power to potentially detect relevant
associations.

Additionally, our results found that a GRSS comprised of 30 adult BMI-
associated genetic variants accounted for 1-2.3% of the phenotypic variance in BMI
across adolescence. Other studies examining genetic risk scores in children incorporated
8 to 17 risk variants and found them to account for 0.8 to 2.2% of the phenotypic
variance in BMI (271-275). To date, no studies of adolescent body weight have
incorporated genetic risk scores in the context of twin methodology and variance
decomposition. However, one longitudinal twin study by Haworth et al., modeled the
genetic and environmental architecture of BMI in children aged 4 to 11 by Cholesky
decomposition and then separately examined the effect of a variant in F70 in a subset of
unrelated twins. The authors reported that the SNP accounted for 0.1% of the variance at
age 4 and increased over time to 1.0% by age 11 (234). There is a need for additional
research examining the effects of validated obesity loci across development.

A number of extensions may be applied to the genetic sum score methodology
presented herein. For example, other classes of genetic variation such as copy number
variation (CNV), insertions, deletions and lower-frequency SNPs may be incorporated
into genetic profiles, as well as comparison of methods based on allelic count versus
weights. For example, our group has previously examined CNVs reported to be
associated with BMI and obesity (Chapter 3), replicating an association with a deletion
on 16p12.3 in an adult sample. Future research should examine these variants in samples
of children and incorporate these into genetic burden scores. In addition, there are various
other latent variable models that may be applied in conjunction with genetic risk scores to
expand insight on the development of relative body weight. Potential models include
simplex and growth curves, which would allow the assessment of variance components
and genetic variants on innovations, transmissions and rate of change of BMI across time.
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In summary, we have utilized a developmental twin study design to examine the
genetic and environmental architecture of BMI by variance components analysis. We
found BMI to be highly heritable accounting for 74-94% of the variance across
adolescence, which was reflected by several genetic factors associated across time and at
specific ages, as well as environmental factors, both common to family members and
specific to individuals, persisting across development. Furthermore, we assessed the
effects of adult-validated BMI-SNPs across adolescence within the context of genetic and
environmental factors determined by variance decomposition. Our results indicated that
the GRSS was associated across development and accounted for 1-2.3% of the
phenotypic variance in BMI across adolescence. These findings, although preliminary,
merit future research, which considers pubertal stage, both in the full ABD sample and
additional replication cohorts. Understanding obesity development will aid in identifying
obesogenic vulnerability time-points and facilitate targeted prevention and treatment
efforts.
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TABLES AND FIGURES

Table 14: Descriptive statistics for BMI by zygosity and age group

FEMALES MALES

Age MeanT1 Mean T2 Cor Pairs/ Mean T1 Mean T2 Cor Pairs/

Zyg (Var) (Var) (Cov) Singles (Var) (Var) (Cov) Singles
8 MZ 17.80 17.64 0.86 141/3 17.13 16.94 0.74 87/1
(8.38) (8.51) (7.29) (8.30) (7.29) (5.74)
8 DZ 18.57 17.47 0.52 58/1 17.28 17.49 0.45 64/2
(17.50) (11.53) (7.38) (11.35) (13.61) (5.58)
11 MZ 18.97 18.87 0.87 159/0 19.05 18.50 0.92 132/1
(12.14) (11.19)  (10.13) (13.18) (12.03)  (11.53)
11 DZ 20.04 19.55 0.57 82/1 18.89 18.30 0.59 81/0
(19.76) (22.01)  (11.80) (18.71) (17.18)  (10.49)
13 MZ 20.20 20.25 0.88 199/1 20.34 19.93 0.90 165/2
(12.79) (14.07)  (11.80) (13.83) (13.63) (12.37)
13 DZ 22.33 21.64 0.58 101/2 20.63 19.80 0.59 92/0
(25.50) (22.91) (14.04) (21.97) (26.84)  (14.26)
15 MZ 21.60 21.42 0.88 223/3 21.30 21.03 0.87 170/2
(17.87) (14.96)  (14.45) (11.99) (10.86) (9.92)
15DZ 23.29 22.31 0.58 80/0 22.22 21.97 0.44 98/2
(23.96) (19.39)  (12.55) (17.02) (23.05) (8.78)
17 MZ 22.14 21.95 0.9 124/4 23.09 22.89 0.9 120/1
(27.86) (22.15) (22.39) (18.83) (21.84)  (18.32)
17 DZ 23.40 22.59 0.58 49/3 23.01 22.87 0.41 50/4
(28.03) (16.54)  (12.55) (22.10) (14.39) (7.35)

Note: BMI = body mass index, Age = age group in years, Zyg = zygosity, MZ =
monozygotic, DZ = dizygotic, T1 = twin one, T2 = twin two, Var = variance, Cov =
covariance, Cor = within-pair Pearson correlation coefficient, Pairs = number of complete
twin pairs, Singles = number of twin singletons.
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Figure 6: Mean BMI by sex and age group in the ABD sample

Figure 7: Variance BMI by sex and age group in the ABD sample
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IP-1f Females and Males ABD

Table 15
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Figure 8: Independent pathway diagram for two common ACE factors and specific ACE
components for five observed variables
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in the ABD sample
in the ABD sample

Figure 9: Partial IP path diagram with path estimates for females
Figure 10: Partial IP path diagram with path estimates for males
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Figure 11: Proportion of phenotypic variance accounted for by common and specific
genetic and environmental components by sex

a) Females
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b) Males

Sex: Male

1.00 W Af2

.60

40

Proportion of Phenotypic Variance

.20

8-10 11-12 13-14 15-16 17-18
Age Group

67

www.manharaa.com




Figure 12: Partial path diagram including effects of GRSS on BMI in females across
adolescence
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Table 17: Total heritability and proportion of heritability due to common and specific
genetic factors for BMI across adolescence

Age Sex Totgl B % A % A % A'
Group Heritability  Factor 1 Factor 2 Specific
8-10 Female 0.88 100 0 0
Male 0.74 100 0 0
11-12 Female 0.89 82 0 18
Male 0.89 68 9 23
13-14 Female 0.74 66 20 14
Male 0.85 96 4 0
15-16 Female 0.84 60 39 1
Male 0.91 73 19 8
17-18 Female 0.91 45 55 0
Male 0.89 44 56 0

Note: BMI = body mass index, A = additive genetic component.
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Table 18: Effect of GRSS on common genetic factors and mean BMI by sex in an un-

related subsample of genotyped ABD participants (Method 1)

Model: Females EP -2LL df AIC Diff LL Difdf p-value [92;}3" Estimated Means

I. Means 5 4471.75 794 2883.75 - - - - 17.9 18.620.9 21.9 22.6

II. Means & PCs 15 4412.09 784 2844.09 - - - - 17.8 19.220.9 21.9 23.0

I11. Age 8-10 16 4410.25 783 2844.25 1.84 1 0.17 0.287 18.219.220.9 21.9 23.0
[-0.129,0.704]

IV. Age 11-12 16 4411 783 2845 1.1 1 0.3 -0.205 17.8 18.920.9 21.9 23.0
[-0.590,0.180]

V. Age 13-14 16 4397.2 783 2831.2 14.89 1 <0.001 0.626 17.819.221.9 21.9 23.0
[0.307,0.944]

VI. Age 15-16 16 4397.27 783 2831.27 14.83 1 <0.001 -0.488 17.819.220.9 21.2 23.0
[-0.736,-0.239]

VII. Age 17-18 16 4405.52 783 2839.52 6.57 1 0.01 0.609 17.819.220.9 21.9 23.9
[0.142,1.078]

VIII. Each age 20 4391.6 779 2833.6 20.5 5 <0.001 0.573 0.743 1.027 0.352 0.651 18.620.3 22.4 22.4 24.0

[-0.157,1.304] [-0.101,1.587] [0.127,1.927] [-0.557,1.261] [-0.439,1.740]
VIILa Age 13-18 18 4394.71 781 2832.71 17.38 3 <0.001 0.424 -0.184 0.155 17.819.221.6 21.6 23.2
[-0.151,0.999] [-0.866,0.497] [-0.775,1.085]

IX. Common Al 16 4410.15 783 2844.15 1.94 1 0.16 0.159 18.519.921.6 22.6 23.7
[-0.065,0.384]

X. Common A2 16 4412.09 783 2846.09 <0.001 1 0.98 0.004 17.819.220.9 21.9 23.0
[-0.245,0.252]

Model: Males EP -2LL df AIC Diff LL Difdf p-value [92;}3" Estimated Means

I. Means 5 2914.75 571 1772.75 - - - - 17.0 18.920.7 22.0 22.6

II. Means & PCs 15 2902.49 561 1780.49 - - - - 16.9 18.920.3 22.0 22.7

I11. Age 8-10 16 2899.06 560 1779.06 3.43 1 0.06 -0.627 16.218.920.321.9 22.7
[-1.296,0.041]

IV. Age 11-12 16 2894.64 560 1774.64 7.85 1 0.01 1.052 17.020.3 20.3 21.9 22.7
[0.311,1.793]

V. Age 13-14 16 2902.42 560 1782.42 0.07 1 0.79 0.079 16.9 18.920.4 21.9 22.7
[-0.555,0.714]

VI. Age 15-16 16 2894.71 560 1774.71 7.77 1 0.01 0.845 17.0 18.920.3 23.1 22.7
[0.248,1.443]

VII. Age 17-18 16 2891.76 560 1771.76 10.73 1 p <0.001 -1.575 17.0 18.920.3 22.0 20.4
[-2.525,-0.625]

VIII. Each age 20 2875.93 556 1763.93 26.56 5 p <0.001 0.5351.763 1.579 1.679 0.046 17.8 21.322.524.322.6

[-0.372,1.443] [0.700,2.827] [0.461,2.698] [0.602,2.757] [-1.274,1.365]

IX. Common Al 16 2891.2 560 1771.2 11.29 1 p <0.001 0.465 18.520.822.8 24.224.4
[0.193,0.737]

X. Common A2 16 2902.01 560 1782.01 0.47 1 0.49 0.123 16.9 19.0 20.4 22.2 23.2
[-0.231,0.477)
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(Method 2)

in pairs

Effect of GRSS on common genetic factors and mean BMI by sex in a

subsample of genotyped ABD tw

Table 19
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SUPPLEMENTAL MATERIAL

Table 20: ABD sample sizes by age and zygosity

Total
ABD Sample 8-10 11-12 13-14 15-16 17-18 Families
ABD BMI Female (pairs/singles) 199/4 241/1 300/3 303/3 173/7 607
MZ 141/3 159/0 199/1 223/3 124/4
DZ 58/1 82/1 101/2 80/0 49/3
ABD BMI Male (pairs/singles) 151/3 213/1 255/2 268/4 170/5 495
MZ 87/1 132/1 165/2 170/2 120/1
DZ 64/2 81/0 92/0 98/2 50/4
ABD BMI Female GRSS T1 & T2 77/3 101/0 135/0 138/0 91/0 242/45
MZ (pairs/singles) 64/3 80/0 108/0 118/0 74/0
DZ (pairs/singles) 13/0 21/0 27/0 20/0 17/0
ABD BMI Male GRSS T1 & T2 4172 59/0 87/0 94/0 63/0 152/46
MZ (pairs/singles) 35/0 48/0 68/0 72/0 54/0
DZ (pairs/singles) 6/2 11/0 19/0 22/0 9/0
ABD BMI Female independent 119 159 194 195 132 359
MZ 64 80 109 119 74
Dz 30 44 49 41 27
DZO 25 35 36 35 31
ABD BMI Male independent 74 105 135 160 102 258
MZ 35 48 69 72 54
Dz 24 29 41 47 23
DZO 15 28 25 41 25
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Chapter S: Comparisons of energy intake and energy
expenditure in overweight and obese women with and without
binge eating disorder

Adapted from:

1) Bartholome LT*, Peterson RE*, Raatz SK, Raymond NC. *Authors contributed equally to
this work. A comparison of the accuracy of self-reported intake with measured intake of a
laboratory overeating episode in overweight and obese women with and without binge eating
disorder. Eur J Nutr. 2012 Feb 3.

2) Raymond NC, Peterson RE, Bartholome LT, Raatz SK, Jensen MD, Levine JA. Comparisons
of Energy Intake and Energy Expenditure in Overweight and Obese Women with and
Without Binge Eating Disorder. Obesity. 2012 Apr;20(4):765-72. Epub 2011 Oct 20.

ABSTRACT

The purpose of this study was to determine whether there are differences in energy intake
or energy expenditure that distinguish overweight/obese women with and without binge
eating disorder (BED). Furthermore, research has demonstrated significant
underreporting of food intake in obese individuals with and without BED. An improved
understanding of the accuracy of self-reported food intake is central to diagnosis of eating
disorders and monitoring response to treatment. Seventeen overweight/obese women with
BED and 17 overweight/obese controls completed random 24-hour dietary recall
interviews, participated in a laboratory eating episode and had total daily energy
expenditure (TDEE) assessed by the doubly labeled water technique with concurrent food
log data collection. Results indicated no between group differences in TDEE, basal
metabolic rate (BMR) or thermal effect of food (TEF). According to dietary recall data,
the BED group had significantly higher caloric intake on days when they had binge
eating episodes than on days when they did not (3255 vs. 2343 kilocalories (kcal)).

There was no difference between BED non-binge day intake and control group intake
(2233 vs. 2140 kcal). Similar results were found for food log data and laboratory
measured intake. Furthermore, when comparing TDEE to dietary recall and food log
data, both groups displayed significant underreporting of caloric intake of similar
magnitudes ranging 20-33%. Predicted energy requirements estimated via the Harris-
Benedict equation underestimated measured TDEE by 23-24%. The BED group self-
reported 90% of the laboratory measured intake compared to 98% for the control group.
Mean differences between the methods indicated that on average both groups under-
reported intake, however the mean difference between methods was significantly greater
in the BED group. Findings confirm that those with BED consume significantly more
than controls during a laboratory binge and controls tended to be more accurate in
recalling their intake 24 hours later. Our data suggest that increased energy intake
reported by BED individuals is due to increased food consumption and not metabolic or
reporting differences.
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INTRODUCTION

Binge eating disorder (BED) is currently classified in the Diagnostic and Statistical
Manual of Mental Disorders, 4™ Edition (DSM-IV) (190) as a provisional diagnosis
requiring further study to support its utility as an eating disorders diagnosis. Two central
criteria describe binge eating in the DSM-IV: 1) “Eating in a discrete period of time an
amount of food that is definitely larger than most individuals would eat during a similar
period of time and under similar circumstances” and 2) “a sense of lack of control” (190).
This study was designed to examine whether there are differences in energy intake or
energy expenditure patterns, which distinguish those with binge eating disorder from
typical overweight/obese controls. Differences in these biological and behavioral factors
between groups may help to clarify whether BED is a distinct eating disorder from
obesity by identifying metabolic and food intake differences between groups.

In both clinical and research settings, the food intake data necessary to determine
if an individual fulfills the first criteria above are collected utilizing self-report
techniques. Throughout medicine, there are concerns regarding the accuracy of self-
reported data. Research has demonstrated significant underreporting of food intake in
obese individuals with (276, 277) and without BED (278-280). For those with BED,
precise measurements of energy intake are associated with additional challenges since
eating episodes are often secretive and associated with feelings of embarrassment and
guilt over how much one is eating (281-283). These characteristics of binge eating may
influence accuracy of reporting.

Despite the challenges associated with precise, objective measurement of eating
behaviors, laboratory studies have been utilized to study food intake in obese women
with and without BED. Our group and others have measured food intake in the
laboratory through the administration of a test meal to simulate a binge eating episode.
Test meal composition has varied by laboratory and included liquid meals (284, 285),
single item meals (286-289) and multiple item arrays of food (287, 290-293). Despite
differing laboratory methodologies, results have consistently demonstrated that
individuals with BED have greater total energy intake than non-BED weight matched
controls when instructed to overeat. Furthermore, there is additional indirect evidence
that women with BED are eating more than they expend as research has shown the
proportion of women with BED in obese samples increases as BMI increases (294-296).

According to previous reports in the literature, having a positive energy balance
(i.e., chronic overfeeding) leads to increased TDEE (297-299). TDEE is most accurately
measured using doubly labeled water (DLW) method, which estimates TDEE within 4-
5% in free living individuals (300). Reports utilizing the DLW method to measure TDEE
suggest that obese individuals report approximately 60% of their actual energy intake
(278, 279). However, few studies have specifically examined the accuracy of self-
reported food intake data in BED. Yanovski’s group examined the accuracy of self-
reported data by comparing average daily food intake assessed by food records to
estimated daily energy expenditure calculated by the Harris-Benedict equation (HBE)
(276). The BED group reported energy intake equivalent to 94% of their predicted
energy requirements compared to 60% in the non-BED obese group. The authors
suggested that the BED group may be more accurate in reporting food intake than
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controls because of the psychological distress associated with binge eating may make the
experience more memorable and thereby more accurate. However, given the limited
number of studies, it remains unclear whether those with BED and non-BED individuals
report food intake with comparable levels of accuracy. If these groups do not have
consistent reporting patterns, food intake data must be interpreted with caution when
trying to determine if they manifest distinctive eating patterns. An improved
understanding of the accuracy of self-reported food intake data is central to distinguishing
BED from typical obesity, making sound diagnosis, and monitoring response to
treatment.

In the current study, we sought to replicate findings by our group and others that
participants with BED will consume more kilocalories than their non-BED counterparts
when instructed to overeat in the laboratory. Secondly, we hypothesize that those with
BED are in a constant state of positive energy balance and therefore will have an elevated
TDEE compared to the non-binge eating women. This is the first study to utilize the
DLW method in the assessment of TDEE in BED. Additionally, Measured food intake in
the laboratory was compared to dietary recall data to ascertain the accuracy of
participants’ recall of the overeating episode. We hypothesized that the overweight/obese
control group would report approximately 60% of measured test meal intake, consistent
with previous reports (278, 279), while the BED group would be more accurate as
observed by Yanovksi and colleagues (276). Further, we sought to confirm the positive
correlation between total food intake and BMI in those with BED during an overeating
episode. A final aim of this paper was to explore the possibility of reduced dietary intake
as a potential precursor to binge eating in BED. We compared food intake preceding the
laboratory overeating episode to test meal intake to ascertain whether caloric intake
before the test meal influences eating during the test meal.

METHODS AND PROCEDURES
Participants

Participants were 17 women who met DSM IV criteria for BED as defined in the
appendix titled Criteria Sets and Axes Provided for Further Study and 17 women with no
history of eating disorder symptoms including binge eating or purging behaviors. In
order to participate in the study, women were required to be between the ages of 18 and
55, have no history of substance abuse or dependence within the six months prior to the
study, and have no unstable comorbid medical or psychiatric conditions. Participants
could not be smokers, pregnant, nursing or on a weight reduction diet as all of these
conditions affect energy metabolism. Because of the difficulty recruiting participants
free of psychiatric medications, participants were not excluded if they were on a stable
dose (for at least 6 months) of antidepressant medication, were psychiatrically stable and
had no plans to modify their medication during the duration of the study. Six participants
with BED and 2 controls were on antidepressants during the time they were participating
in the study. The study was conducted at the General Clinical Research Center (GCRC)
of the University of Minnesota. This protocol was reviewed and approved by the
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Institutional Review Board at the University of Minnesota and all participants partook in
the informed consent process and signed a consent form.

Recruitment was performed by newspaper advertisements inviting overweight
women aged 18 to 55 years old to participate in a paid research study at the University of
Minnesota. A telephone screen was used to assess preliminary eligibility for the BED
and control groups. Participants meeting initial criteria were scheduled for a complete
evaluation at the Ambulatory Research Center (ARC) to determine eligibility. During
this evaluation participants were interviewed using the Structured Clinical Interview for
DSM-IV Axis I Disorders, Patient Edition (SCID-I/P) (301); the Structured Clinical
Interview for Axis Il Personality Disorders (SCID-II) (302); and the Eating Disorder
Examination, version 12.0D (EDE) (303). These assessments were used to confirm that
BED participants fulfilled diagnostic criteria and to rule out any history of eating disorder
symptoms in the control group. A physical exam, complete blood count, basic metabolic
panel, and thyroid and liver function tests were performed to detect unknown medical
conditions that could influence eligibility.

As part of the initial evaluation, participants were interviewed by a registered
dietitian who was blind to their diagnostic status to assess typical food intake patterns,
food selection, and preferred snack foods. Participants were presented with a
standardized list of food items and asked to indicate which appealed to them. In addition,
participants were asked if they had other favorite foods or recipes that they consumed
when overeating. Based on this information, the dietitian created a snack tray
personalized to each participant’s eating preferences for the laboratory overeating
episode. Snack trays included 6-10 food items, consisting of both savory and sweet, in
quantities 2-3 times what participants reportedly consumed during an overeating episode.

Eligible participants were then scheduled for a 24-hour inpatient stay at the
GCRC during which they would engage in a laboratory overeating episode and
subsequently complete a telephone dietary recall of 24-hour period including the test
meal. Patients were not informed that they were scheduled for a dietary recall interview
until after completion of the overeating episode. This was done to ensure that knowledge
of the recall would not influence eating behaviors in the laboratory. In addition to
collecting food intake data for the test meal, the dietary recall protocol gathered self-
reported food intake for the periods preceding and following the overeating episode. This
enabled a comparison of pre-binge and post-binge food intake to intake during the test
meal.

Eligible participants were scheduled for two procedures, six random 24-hour
dietary recall interviews and a 24-hour inpatient stay on the General Clinical Research
Center (GCRC). On the day of admission, participants were instructed not to eat after
12:00 noon. While on the inpatient unit, they consumed doubly labeled water for the
TDEE measurement, received two baseline (DXA) scans and had BMR and TEF
measured using indirect calorimetry. Details of each of these methods are provided
below. Participants’ height and weight were measured on admission. Weight was
repeated two weeks later. The inpatient stay was scheduled to coincide with the luteal
phase of the menstrual cycle, confirmed by estradiol and progesterone levels, to control
for hormonal influences on food intake.

Laboratory binge eating episode
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Participants were instructed not to consume any food or caloric beverages after 12
pm and to arrive at the GCRC no later than 5:30 pm. After admission procedures,
participants were presented with a standard hospital dinner plus an excess of their
preferential binge foods as ascertained by the dietary assessment. They were instructed
to “Let yourself go and eat as much as you like”. Participants were left alone to eat and
told to notify the research team when they were finished with the meal. This same
laboratory test meal protocol has been utilized in previous work by our group (293).

Upon completion of the meal, food trays were removed from the room. All food
items presented to participants were weighed in the GCRC metabolic kitchen prior to
service, and remaining portions were weighed after completion of the overeating episode.
The exact quantity of each item consumed was calculated by difference in mass. The
computer program Nutritionist IV (304) was used to calculate total food intake in kcal
and grams (gm) and macronutrient intake in gm. To compare our results with others,
macronutrient values in kcal were estimated from measured values in grams by the
following standard conversion: 4.0 kcal/gm carbohydrate, 4.0 kcal/gm protein, and 9.0
kcal/gm fat.

Twenty-four hour dietary recall

Over a six to eight week period of time (that excluded the DLW data collection period)
each participant received six random 24-hour dietary recall interviews that were
conducted by the staff of the Nutrition Coordinating Center (NCC), Department of
Epidemiology, School of Public Health, University of Minnesota. Four of the six were
conducted during weekdays and two on weekends as this best approximates normal
intake. The dietary recall interviews involved a detailed discussion of food intake and
portion sizes with expert interviewers. The 24-hour dietary recall interview protocol has
been described in previous studies by our group (305, 306). Dietary interviewers
collected the 24-hour dietary recalls using a current version of the database each year. At
the end of data collection, nutrients were recalculated for all dietary intake records on the
most current version of the Nutrition Data System for Research (NDS-R) software
version 4.01, Food and Nutrient Database 30, released November 1999. NDS-R is
developed and maintained by the NCC, University of Minnesota, Minneapolis, MN. The
NDS-R system prompts the interviewer to ask detailed questions about food intake over a
24-hour period. The interviewer asks the participant to recall the first eating episode
during the 24-hour period. As the interviewer records food items during that eating
episode the program prompts the interviewer to ask about additional foods that may be
typically eaten with the specific item (e.g. condiments with hot dogs or the type of milk
or sugar added to cereal). When the first eating episode is fully explored, the interviewer
asks about the next eating episode and proceeds in this fashion through the entire 24 hour
period. Prior to the data collection participants were trained in the use of food-portion
visuals (picture of containers and shapes of specific quantities that are drawn to scale) to
estimate dietary intake as described by Posner (307).

Additionally, on the afternoon following the laboratory test meal, participants
completed a dietary recall interview for the 24-hour time period from midnight to
midnight during which they engaged in the overeating episode. At the time the dietary
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recall of the inpatient binge eating episode was collected, all participants had already
competed at least one random recall with the NCC interviewers as part of the larger
research protocol in which they were participating. Following collection of dietary recall
data, eating episodes that occurred during the 24-hour period were defined as pre-binge,
binge or post-binge. Pre-binge intake was defined as food consumption beginning at 12
am up to delivery of the test meal. Binge intake included only the test meal administered
at the GCRC. Post-binge intake was defined as food consumption after the test meal until
11:59 pm. This breakdown enabled a comparison of pre-binge and binge intake to
examine the role of reduced caloric intake as a precursor to binge eating episodes.

Food log

During the two weeks of urine collection participants also kept a food diary so that
recorded intake could be compared to measured TDEE during the two week period of
time. Participants were trained in the use of food logs by a training tape provided by the
GCRC dietician. Food logs were routinely reviewed by the research team and further
questions regarding intake were asked if recorded data lacked sufficient detail for
calculation of energy intake.

Basal metabolic rate (BMR) and thermic effect of food (TEF)

BMR and TEF were measured using the Delta Track Metabolic Cart (SensorMedics,
Yorba Linda, CA). BMR and TEF were collected for two participants (one BED and one
control) on a SensorMedics Vmax 29 Metabolic cart (SensorMedics, Yorba Linda, CA)
because of technical issues with equipment. Participants were awakened at a standardized
morning hour, allowed to void, and then rested for one-half hour before BMR was
measured. BMR was assessed using a thirty minute recording under the plastic hood
while awake, in a semi-recumbent position in bed. The first 10 minutes were used to
obtain a stable baseline. BMR was then calculated from the average of the next 20
minutes of data collection. Participants then drank a standardized oral meal replacement
formula (Ensure High Protein, Abbot Laboratories) which contained 250 kilocalories
(protein 14.4%, carbohydrate 64.0%, Fat 21.6%). TEF or postprandial thermogenesis
was measured based on data collected over the next 5 hours by placing the participant
under the hood to collect data for 15 minutes of every 30 minutes to prevent participant
fatigue or agitation. The first 5 minutes of every 15 minute period was used to establish a
stable baseline. Conventional methods were used to calculate daily TEF.

Total daily energy expenditure

TDEE was measured over 14 days using the doubly labeled water protocol (25, 30, 31).
Baseline urine specimens were collected immediately prior to the timed ingestion of the
isotopes (*Hand O'). The amount administered was calculated according to a
standardized procedure (25, 26). Following timed administration of the isotopes, urine
samples were collected at 12 hour intervals each day for 14 days. Date and exact
collection times were recorded on each bottle and specimens were dropped off to the
clinic every three to four days during the two weeks of data collection. TDEE was
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derived using the slope-intercept equations described by Coward, et al. (32). Validation
studies have determined the precision of the method to be within 4-5% (33).

Assessment of change in body composition through repeated DXA scans

Two baseline DXA scans (Lunar Prodigy, General Electric Medical, Madison, WI) were
collected on the day the DLW was administered. They were repeated two weeks later at
the completion of DLW protocol. Assessment of body composition is essential because
if body weight and composition are stable, energy intake must be equal to energy
expenditure. Collection of body composition data allows for an accurate comparison of
food intake data (collected via dietary recalls and food logs) to the TDEE measured by
DLW. If there was no change in body weight or composition, the measured TDEE
should be equal to energy intake. Therefore, by comparing reported food intake to
measured energy expenditure, we examined the accuracy of food log data kept over the
two-week period when TDEE was assessed.

Predicted energy requirements

The Harris-Benedict equation (HBE), commonly used in clinical settings, calculates
resting metabolic rate based on gender, weight, height and age (34). Predicted energy
requirements can be made by adjusting for activity level. To attain predicted energy
needs, participants’ HBE estimates were multiplied by 1.35 to account for light activity.

Analysis of DLW by isotope ratio/mass spectrometry

Deuterium and '*O in urine were measured using a dual inlet ThermoFinnigan DeltaS
Isotope Ratio Mass Spectrometer (ThermoFisher Scientific, Bremen, Germany).
Deuterium was analyzed using an H-Device by reducing 1uL water via a chromium
furnace held at 825°C. The deuterium produced was measured against a calibrated
hydrogen reference gas. '*O was measured in a separate assay by equilibration of urine
with CO,. 1ml urine was introduced into a 12ml exetainer and 5% CO, in Helium added
to the tube. The sample was then allowed to equilibrate overnight at room temperature.
Analysis of the C'*0'°O produced was performed by measurement against a CO,
reference gas using a breath bench carousel inlet. In both assays, calibration curves were
prepared to which the samples were compared.

Statistical analysis

Descriptive statistics, Pearson correlation coefficients and analysis of variance were
calculated using SPSS version 17.0. The reporting accuracy was defined by two methods.
The first method was the directional difference, which was defined as the mean
difference of measured intake minus reported intake. Negative values reflect over-
reporting while positive values signify under-reporting. The second method to determine
reporting accuracy was the absolute difference, which was defined as the absolute value
of the measured intake less the reported intake. Greater absolute difference values
indicated greater inaccuracy overall despite whether the difference arose from under or
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over-reporting. Analysis of variance was used to determine between group differences on
total and macronutrient intake, directional and absolute difference between laboratory
and dietary recall, and energy consumption throughout the day. The proportion of energy
intake from carbohydrate, fat and protein was examined by dividing the macronutrient
intake by total intake. Pearson’s correlation coefficient was used to determine the
relationship between BMI and total food intake. Student’s #-tests and paired samples
correlation coefficients were used to compare within group differences on laboratory,
dietary recall data and energy consumption throughout the day. To assess the difference
between correlation coefficients between groups, Fischer’s r-to-z transformations were
used.

RESULTS
Demographic data

There were no statistically significant differences between groups with regard to age and
BMI (Table 21). The BMI range for the participants was 25.6 to 51.9 with 20.7% of the
sample overweight (4 BEDs and 2 controls). Baseline binge frequency according to EDE
assessments in the BED group ranged from twice per week to daily with a group mean of
17 episodes per month (median = 12).

Metabolic measurements

There were no between group differences in TDEE, BMR, or TEF (Table 21). TDEE was
significantly correlated with total food intake in kcal as assessed by 24-hour recall in the
whole sample (n =29, r* = 0.422, p = 0 .025) but not by food logs. When the two groups
were examined separately there was no significant correlation between TDEE and intake
as assessed by dietary recall in the BED group, but there was a trend that indicated a
possible correlation in the control group (n = 13, r* = 0.522, p = 0.056).

Body composition

There were no differences between groups on baseline measures of fat and lean tissue
compartment, follow-up fat and lean tissue compartments or on change in fat, change in
lean, according to the DXA scan data. There were also no within group differences in
baseline and follow-up on fat or lean tissue compartments. There were no within or
between group differences in weight from baseline to follow-up.

Random 24-hour dietary recall data

BED participants had an average of 2.29 binge days during the 6 dietary recalls (median
=2, range = [0,5]). The BED group had a significantly higher caloric intake on days
when they had binge eating episodes than on days when they did not (Table 23).
Additionally, caloric intake in the BED group on binge days was significantly higher than
control average intake. There was no difference between BED non-binge day intake and
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control intake (Table 22). There was a trend toward higher average daily intake in the
BED group (p=0.053). There was a significant group difference in number of
kilocalories consumed per unit of BMI with the BED group consuming 76.2 kcal/BMI
unit and the controls consuming 61.0 kcal/BMI unit.

Food log data

BED participants had an average of 7.5 binge days during 14 days of food log entries
(median = 7.5, range = [4,11]). The food log data corroborated that BED participants
consumed significantly more kcal on binge days than non-binge days (Table 23) and had
greater intake on binge days than controls (Table 22). The BED group had similar intake
on non-binge days to controls. There were no significant differences in average intake or
kcal/BMI unit between groups according to food log data.

Energy expenditure versus reported intake

Daily intake as reported by the 24-hour recall data and the food log data were compared
to actual TDEE as assessed by DLW (Table 24). BED participants reported caloric
intake that was 80% of TDEE according to dietary recall data and 70% of TDEE
according to food log data. Control participants reported caloric intake that was 67% and
72% of TDEE according to dietary recall and food log data, respectively. There were no
significant group differences in under-reporting between groups.

Predicted energy requirements versus energy expenditure

There were no between group differences on HBE predicted energy requirements. When
comparing predicted energy requirements to actual TDEE there were no group
differences. Predicted energy requirements accounted for 76% and 77% of actual TDEE
for BED and control groups respectively (Table 24).

Energy and macronutrient intake during an overeating episode: laboratory vs. dietary
recall

Table 25 reports descriptive and test statistics for laboratory and dietary recall intake.
Total food intake was significantly greater in those with BED than those without
according to laboratory (2305.1 vs. 1461.8 kcal; 466.3 vs. 294.4 gm) and dietary recall
methodologies (2091.1 vs. 1312.8 kcal; 411.1 vs. 261.6 gm). Compared to
overweight/obese controls, those with BED consumed significantly more grams of
carbohydrate (laboratory: 294 vs. 71 gm; recall: 251 vs. 151 gm) and grams of fat
(laboratory: 96 vs. 63 gm; recall: 99.7 vs. 59 gm) according to both methodologies. There
was no significant difference between BED and control participants in protein intake.
The proportion of energy intake from carbohydrate, fat and protein was also
examined. There was no significant difference between BED and control groups in the
proportion of intake from carbohydrates and fats. Controls consumed a significantly
greater proportion of energy intake from protein than those with BED according to the
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dietary recall data (15.1% vs. 20.1%). This difference was not significant when
measured in the laboratory.

Multiple methods to evaluate accuracy of self-reported food intake data

Paired samples t-tests demonstrated no significant within group differences in total food
and macronutrient intake between laboratory and dietary recall methodologies in either
BED or control groups (Table 25). One exception was the proportion of total intake from
fat, with the BED group reporting to consume more % fat in the dietary recall than was
measured by the laboratory (24.1 vs. 19.7% %). Accuracy of reporting was further
examined by calculating the ratio of self-reported intake assessed by dietary recall to
measured intake in the laboratory (dietary recall / laboratory). The proportion of reported
to measured food intake measured in grams was 0.94 (SD = 0.040) in the BED group and
0.89 (SD = 0.36) in the control group. There was no significant difference between
groups (F (1, 28) =0.147, p = 0.704). Additionally, there was no significant difference
between groups when evaluating the dietary recall / laboratory ratio with food intake
measured in kcal (0.98, SD = 0.45 vs. 0.90, SD = 0.36; F (1, 28) = 0.308, p = 0.584). The
correlation between laboratory and dietary recall methodologies was calculated to
evaluate accuracy of self-reported data. In both BED and obese control groups,
significant within group correlations were found between laboratory and recall methods
for total food intake measured in kcal (BED: r =0.530, p=0.05, CON: r = 0.805, p <
0.001). Total food intake measured in grams was significantly correlated between
methods in the control group (r = 0.777, p < 0.001), but only a trend towards significance
in the BED group (r = 0.465, p = 0.09). The difference between the two correlation
coefficients approached significance (kcal z=1.33, p=0.091, gm z = 1.36, p = 0.086).

To further explore the accuracy of self-reported intake, we performed a between
group comparison of the directional difference and the absolute value of the mean
difference for total food and macronutrient intake assessed by laboratory and dietary
recall methods (Table 26). Results demonstrated that the BED participants had much
greater variability in their self-reported data as can be seen by the standard deviation of
the group means and the magnitude of the absolute values of the mean for the majority of
the comparisons in Table 26. There was a trend toward the absolute value of the
difference being significantly greater in those with BED than obese controls.

Relationship between total food intake and BMI

Examining BED and obese control groups together, BMI and total food intake were not
significantly correlated according to laboratory (kcal: r=0.192, p =0.292; gm: r=0.199,
p = 0.274) or dietary recall methodologies (kcal: r = 0.214, p = 0.265; gm: r = 0.206, p =
0.284). In the control group, BMI was significantly correlated with food intake in the
laboratory (kcal: r = 0.541, p = 0.025; gm: r = 0.562, p = 0.019) and dietary recall data
(kcal: r=0.540, p = 0.038; gm: r = 0.543, p=0.036). In those with BED, BMI and food
intake were not significantly correlated according to laboratory (kcal: r =-0.057, p =
0.840; gm: r =-0.054, p = 0.849) or dietary recall data (kcal: r=-0.108, p=0.714; g: r =
-0.123, p=0.675).
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Patterns of energy consumption throughout the day

Table 27 reports descriptive and test statistics for patterns of energy consumption
throughout the day. There were no significant differences between BED and obese
control groups in pre-binge or post-binge caloric intake. No significant correlations were
found between pre-binge and binge intake or post-binge and binge intake in the BED
group. In the obese control group, pre-binge intake was significantly correlated with
binge intake (r = 0.576, p = 0.025) and post-binge intake was marginally significant (r =
0.505, p =0.055). Pre-binge and post-binge intake were significantly positively
correlated in those with BED (r = 0.616, p = 0.019), obese controls (r = 0.564, p = 0.028)
and overall (r=0.465, p=0.011).

DISCUSSION

The data do not support the hypothesis of higher energy expenditure in the BED group as
there were no statistical differences in TDEE, BMR, or TEF between BED participants
and overweight/obese controls. Using the doubly labeled water method in the current
study, TDEE was 3214 and 3172 kcal/day in BED and non-BED participants,
respectively. To the best of our knowledge, this is the first study to measure TDEE by
the DLW method in overweight/obese females with BED. Obesity researchers using
DLW to measure TDEE have reported values ranging from 2090 kcal/day in obese
females during periods of dietary restraint (35) to 3708 kcal/day in obese females with a
mean BMI of 37.4 kg/m2 (36). Examining studies of obese females with a BMI range
from 29.6 to 33.0, the reported TDEE ranged from 2452 to 2952 kcal/day (37-41). The
high TDEE in our study may be a result of higher BMI in our BED (34.8) and control
groups (35.2) that approached that of Platte’s participants (37.4) (36). Measurements of
BMR in our BED and control groups are consistent with those for obese females reported
in the literature ranging from 1502 kcal/day to 1680 kcal/day (37, 39, 40). As stated
above, we found no difference between BED and non-BED in the thermic effect of food.
Some researchers have demonstrated decreased TEF in obese participants (42), but these
findings are controversial as others have found no difference between obese and normal
weight individuals. Together these results suggest that there are not significant
differences in energy expenditure and metabolic measurements between
overweight/obese women with and without BED. Additionally, there was no difference in
body composition between groups and no change in body composition over the two
weeks of DLW sample collection within either group.

In clinical practice and weight loss programs, many still rely on the Harris-
Benedict equation (HBE) to estimate energy requirements. We calculated daily energy
expenditure using the HBE and compared it to TDEE measured by the DLW method.
The HBE substantially underestimated measured TDEE in this sample by about 23% and
24% in the BED and control groups, respectively. Estimates of predicted energy
expenditure calculated using the HBE should be interpreted with caution given this
discrepancy. Further research is needed to validate the utility of the Harris-Benedict
equation as an estimate of energy expenditure in overweight/obese and eating disordered
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individuals. Equations may need to be adjusted for accurate prediction of energy
requirements for overweight/obese populations.

A second objective of this study was to assess differences in energy intake
between groups. In the current study, the BED group ate significantly more on binge
days than on non-binge days and controls. This finding was detected by both laboratory
(2305 vs. 1462 kcal) and dietary recall methodologies (2091 vs. 1313 kcal). There was no
difference between BED non-binge days and average daily consumption by controls.
There was a trend toward the BED group consuming more kilocalories on average than
the controls as assessed by 24-hour recall (BED = 2586.9 kcal, SD = 640.1, Control =
2140.0 kcal, SD = 659.1, F(1,32) =4.032, p = .053) but not according to food log data.
These discrepant results are likely due to the 24-hour recalls being a more accurate
account of food intake than the food log entries (24-hour recall estimates were closer to
TDEE as determined by DLW). It is also important to note that the BED group consumed
significantly more kilocalories per BMI unit than did the control group adding additional
support to the finding of higher daily caloric intake in the BED group.

Macronutrient intake data indicated that those with BED eat significantly greater
amounts of carbohydrate and fat than obese controls during a laboratory overeating
episode. However, there were no differences in the proportion of total energy intake
derived from carbohydrates and fat between groups. This suggests that the differences in
total carbohydrate and fat intake observed were secondary to increased food intake in
BED participants and do not reflect differences in food selection. This is consistent with
previous work by our group in which those with BED consumed significantly more total
fat than obese controls, but the proportion of energy intake from fat was not significantly
different between groups (293). Dietary recall data indicated that control participants
consumed a significantly greater proportion of total energy from protein compared to the
BED group. However, this difference was not significant according to laboratory
measurements, which is the gold standard for measuring dietary intake. Results of our
previous study detected no difference in total or proportion of protein intake between
groups (293). We suspect this finding represents differences between groups in accuracy
of reporting rather than a true difference in macronutrient consumption.

Other research groups have examined macronutrient intake when obese women
with and without BED are instructed to overeat in the laboratory. Yanovski found that
those with BED consumed significantly more fat (38.9% vs. 33.5%) and less protein
(11.4% vs. 15.4%) than obese controls (292). Guss reported that obese women with BED
(BMI >28) consumed a significantly greater proportion of energy from fat than normal
weight controls (BMI 19-23), but observed no difference between obese women with and
without BED (292). In contrast, Goldfein reported no difference in the proportions of
macronutrient intake between obese women with and without BED when instructed to
overeat in the laboratory (287). Given these findings and those of the present study, it
remains unclear whether differences in macronutrient intake exist between obese women
with and without BED. The three studies discussed above utilized an identical laboratory
paradigm. Direct comparison of these findings to the current study is difficult because
macronutrient consumption reflects both food selection and food presentation, which
varies by laboratory protocol.

Our results and the literature review above raise important questions. If there are
no differences between the BED and control groups metabolically and the BED group
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consumes more energy than the control group then over time the BED group should gain
more weight. However, we did not find any statistically significant differences in body
composition between baseline measures and the two week follow up. If the BED group is
actually consuming more energy and the TDEE is not different from controls then it is
possible that our method of measuring change in body composition was not sensitive
enough to detect increases in body mass over the two week period or we did not have
enough power to statistically support such differences between groups. The test-retest
differences for duplicate measures on the DXA scanner was <2%, with the ability to
detect changes as low as 0.6 kg (SD = 0.023) (44). The change in kg over the two week
collection period for the BED group was +0.033 (SD = 1.62 ) and for the control group
was -0.671 (SD = 1.66) which was not statistically different between groups.
Additionally, our post hoc power to detect a mean difference of this magnitude between
groups at an alpha level of 0.05 was 31.2%. Given the body composition change in this
sample was within the confidence limits of the DXA scanner and the limited power to
detect changes over a small time period, further research is needed to confirm that indeed
BED is associated with higher overall caloric intake and weight gain.

A third objective was to determine the accuracy of caloric intake as assessed by
dietary recall interview and food log data. This was done by comparing recorded intake
with measured energy expenditure (TDEE) obtained from the doubly labeled water
method. Since there was no change in body weight or composition as assessed by DXA
during the 14 days of doubly water collection, we can assume that energy intake was
equal to TDEE. BED participants reported caloric intake that was 80% of TDEE
according to dietary recall data and 68% of TDEE according to food log data. Control
participants reported caloric intake that was 70% and 73% of TDEE according to dietary
recall and food log data, respectively. There were no significant differences between
groups by either method. Reports comparing recorded intake in obese individuals to
energy expenditure measured by the DLW method suggest that most report intake that is
approximately 60% of predicted expenditure (19, 20). Although the expected 60%
accuracy was within our 95% confidence region, our estimates on average were greater.

It is possible that our BED and control groups reported intake with greater
accuracy as a result of the dietary recall interviews that the women participated in prior to
collecting the self-reported food log data. The dietary recall interviews involved a
detailed discussion of food intake and portion sizes with expert interviewers.
Additionally, participants were required to watch a food record training video
immediately prior to the two weeks of food log data collection. These activities may have
trained participants in monitoring food consumption, leading to increased accuracy when
recording intake in a food log later in the project. This may account for our groups
reporting a higher percentage of TDEE than the 60% seen in most studies.

To expand on the findings above, we compared measured food intake in the
laboratory to dietary recall estimates of intake to ascertain the accuracy of self-reported
data in obese women with and without BED. To the best of our knowledge, this is the
first study to compare laboratory and dietary recall measurements of a specific eating
episode in adult women with BED. According to dietary recall interviews, BED and
obese control groups reported 90% and 98% of measured food intake during an
overeating episode in the laboratory, respectively. Furthermore, there were no
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differences between groups in the accuracy of self-reported carbohydrate, fat, or protein
intake.

When comparing random 24-hour dietary recall data with TDEE assessed using
the DLW method in these same participants, we noted that the BED and obese control
groups reported daily food intake at 80% and 68% of TDEE, respectively (277) Since
accuracy of self-reported data for an isolated laboratory overeating episode was examined
in the current study, direct comparisons to the results above cannot be made. Further
research is required to determine if these findings can be replicated and, if so, what
factors facilitate the observed improvement in reporting. It is possible that the
participants in this study may have reported with greater accuracy because the laboratory
environment and unique food presentation made the episode more memorable than eating
in the natural environment thus resulting in improved recall of intake.

While there is not total consistency throughout the results, the three methods used
to examine the accuracy of self-reported food intake taken together suggest that those
with BED were less accurate than obese controls. Within group comparisons
demonstrated no significant differences between laboratory and dietary recall methods in
total food or macronutrient intake in either group. Significant positive correlations
between measured and self-reported intake were observed in both groups. However, the
correlation coefficients were larger in the control group (r = 0.805 vs. 0.530), indicating
that they were on average more accurate than those with BED. There was a trend toward
a significant difference between these correlation coefficients (p = 0.09). We also
examined the directional difference and the absolute value of the mean difference
between reported and measured intake to examine the direction and magnitude of the
inaccuracies in the two groups. Mean differences indicated that both groups under-
reported intake, but those with BED did so to a greater extent (215 vs. 160 kcal, p =
0.021). The mean of the absolute value of the difference suggests that the BED group
tended to be less accurate at reporting their intake overall than controls (779 vs. 438 kcal,
p=0.061). The BED group also demonstrated greater variability in reporting as
evidenced by standard deviations that were larger than those noted in controls. Overall,
these findings are suggestive that those with BED tended to be less accurate with self-
reported intake than obese controls.

Our findings suggest that the overweight/obese control participants demonstrated
a trend to be more accurate at estimating total energy and macronutrient intake. It is
possible that decreased accuracy of dietary recall data in participants with BED may be
the result of subjective loss of control and consumption of an extremely large amount of
food in a short period of time. Both of these factors may impair awareness of food
consumption in BED relative to control participants. Further research is needed to
confirm that BED participants are less accurate at reporting food intake than non-BED
overweight/obese and to understand the mechanism of impaired accuracy.

Researchers have observed a positive correlation between food intake and BMI
when participants with BED were instructed to binge eat in the laboratory (291) In the
current study, we sought to confirm that eating in proportion to BMI accounts for the
variability in food intake reported in those with BED. Our results indicated that BMI and
food intake were significantly correlated in the obese control group, but not in the BED
group. These findings are not consistent with those reported by Guss and colleagues
(291), who noted a positive correlation between meal size and BMI in the BED group
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under binge eating conditions. Significant correlations were not observed in the BED
group when they were instructed to eat a normal meal or in obese control participants
under binge or normal eating conditions. These results are not consistent with our
findings and question the role of BMI in modulating food intake during a single eating
episode in those with BED. Methodological differences between these studies make
comparison of results difficult and demonstrate the need for further research addressing
this issue.

A final aim of this study was to explore the role of reduced caloric intake as a
potential precursor to binge eating in BED. To analyze patterns of energy consumption
throughout the day, total daily caloric intake assessed by dietary recall was categorized as
pre-binge, binge, or post binge intake. There were no significant correlations detected
between pre-binge and binge intake or binge and post-binge intake in the BED group.
These findings suggest that food intake preceding and following an overeating episode is
not associated with food consumption during the overeating episode alone. In contrast, in
the obese control group there were positive correlations between all of the comparisons,
suggesting that those who eat more before the overeating episode also eat more during
and afterwards. Further, significant positive correlations were noted between pre-binge
and post-binge food intake in both groups. This observation suggests that those who
tended to consume a larger amount of food preceding the overeating episode also tended
to eat more following it. Likewise, those who ate less before the overeating episode also
ate less following it. Failure to compensate for overeating with reduced dietary intake
may contribute to the development of obesity.

Strengths of our study include the multiple methods used to assess energy intake
and the use of the gold standard doubly labeled water method to assess energy
expenditure. Although the size of the sample is larger than much of the previous work in
this area, it is still a limitation of this study. A larger sample size may have clarified the
issue of whether there is a significant difference in average daily intake between those
with BED and controls. A further limitation is the lack of inclusion of data on physical
activity due to participant noncompliance and technical issues with monitors. Although
BED is more common in females, another limitation is the lack of inclusion of men.
Future studies should include both sexes.

In summary, a major finding of this study is that regardless of the method used to
assess intake, both the BED and control groups underestimate their caloric consumption.
It is also interesting to note that there is greater disparity in daily caloric intake between
the two methods in the BED group than in the controls. However, both groups reported
fewer kcal than required to maintain their current weight since the reported intake was
less than the TDEE by both methods of assessment. Thus the main positive finding in
our study was well summarized by Lichtman et al in their1992 article in which they
compared TDEE using DLW with reported intake, “The failure of some obese subjects to
lose weight while eating a diet they report as low in calories is due to an energy intake
substantially higher than reported and an overestimation of physical activity, not the
abnormality in thermogenesis” (35).

The findings of our group and others repeatedly demonstrate increased intake on
binge days compared to non-binge days in BED women. This distinguishes those with
BED from typical obesity and lends further support to the diagnostic utility of BED and
its inclusion in the upcoming DSM-V. Further research will clarify with increasing

87

www.manaraa.com



precision the quantity, nutrient composition, and food selections that characterize binge
eating episodes in BED. Characterizing the eating behaviors associated with BED — both
in the laboratory and through self-reported data - will facilitate accurate diagnosis and
assessment of treatment response.
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TABLES

Table 21: Descriptive statistics and group differences in demographics, energy

expenditure and energy intake measures

BED CON
Mean Mean F

(n=BED/n=CON) (SD) (SD) P
Age (years) 30.8 31.7 0.107 0.745
(17/17) (7.2) (8.5)
BMI (kg/m2) 34.8 35.2 0.019 0.891
(17/17) (6.0) (6.9)
TDEE 3213.9 3171.8 0.044 0.835
(15/14) (552.8) (525.3)
TEF 354 29.7 0.534 0.472
(15/14) (20.0) (21.4)
BMR 1607.7 1628.1 0.035 0.853
(15/14) (246.8) (336.8)
24-hour Recall (Kcals) 2586.9 2140.0 4.023 0.053
(17/17) (640.1) (659.1)
24-hour Recall 76.2 61.0 5.268 0.030
(Kcals/BMI) (17/17) (23.4) (14.2)
Food Log (Kcals) 2234.4 2185.0 0.082 0.777
(14/16) (386.0) (535.4)
Food Log 67.5 62.6 0.707 0.408
(Kcals/BMI) (14/16) (17.4) (14.0)

Note: BED = binge eating disorder, CON = control, » = sample size, SD = standard

deviation, BMI = body mass index, TDEE = total daily energy expenditure, TEF =

thermic effect of food, BMR = basal metabolic rate.
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Table 22: Comparison of caloric intake on BED binge days and non-binge days with
control data

BED BED Controls BED Binge BED Non-Binge
Binge Non-Binge vs. Control vs. Control
Days Days
Mean Mean Mean
(SD) (SD) (SD) F p F p
n n n
24-hour Recall
3254.5 22334 2140.0
(520.0) (584.0) (659.1) 26429 <0.0001  0.191 0.665
14 17 17
Food Log
2983.0 1972.1 2185.0
(43121'6) (3012'0) (53156.4) 16.815 <0.0001  1.721 0.200

Note: BED = binge eating disorder, SD = standard deviation.
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Table 23: Comparison of caloric intake on BED binge days with BED non-binge days

BED BED Binge Day vs.
Binge Non-Binge Non-Binge Day
Days Days
Mean Mean
(SD) (SD) F p

n n

24-hour Recall

3254.5 2343.1
(520.0) (556.6) 26.429 <0.0001

14 14

Food Log

2983.0 1972.5
(43121'6) (3131'7) 16.815 <0.0001

Note: BED = binge eating disorder, SD = standard deviation.
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Table 24: Descriptive statistics and group differences in energy expenditure versus

reported intake

BED Control F p
(n=BED/n=Control) Mean Mean

(SD) (SD)
24-hour Recall/TDEE 0.797 0.675 1.885 0.181
(15/14) (0.23) (0.25)
Food Log/TDEE 0.702 0.725 0.081 0.778
(15/13) (0.19) (0.24)
HBE 1759.5 1790.7 0.148 0.704
(15/14) (175.4) (257.4)
PER 2375.3 2417.5 0.148 0.704
(15/14) (236.8) (347.5)
PER/TDEE 0.757 0.774 0.121 0.731
(15/14) (0.14) (0.12)

Note: BED = binge eating disorder, SD = standard deviation, TDEE = total daily energy
expenditure, HBE = Harris-Benedict equation, PER = predicted energy requirements

based on HBE and light activity.
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Table 25: Mean total energy and macronutrient intake during a laboratory over eating
episode: Laboratory measurement vs. dietary recall interview

Laboratory test meal

Dietary recall interview

Laboratory vs. Recall

BED (n=15) CON (n=17) BED (n=14) CON (n=15) BED CON

Mean (SD) Mean (SD) F(1,31) (p) Mean (SD) Mean (SD) F (1,28) (p) t(p) t(p)

2305.1 (834.0) 1461.8 (641.9) 10.41 (0.003) 2091.1 (1044.1) 1312.8 (847.5) 4.89 (0.036) 0.859 (0.406) 1.240 (0.235)
466.3 (158.2)  293.4(123.6) 12.02 (0.002) 411.1 (200.0) 261.6 (159.6)  4.98 (0.034) 1.059 (0.309) 1.364 (0.194)
294.1 (97.9) 176.9 (70.9) 15.29 (<0.001) 251.2 (128.1) 150.9 (84.9) 6.26 (0.019) 1.376 (0.192) 1.585 (0.135)
63.7 (6.2) 60.6 (5.0) 2.43 (0.129) 60.8 (8.5) 58.0(8.3) 0.812 (0.375) 2.015 (0.650) 1.682 (0.115)
1176.2 (391.6)  707.66 (408.9)  15.29 (<0.001) 1004.8 (512.4) 603.6 (339.7)  6.26 (0.019) 1.376 (0.192) 1.585(0.135)
96.3 (47.5) 62.8 (32.4) 5.57 (0.025) 99.7 (54.6) 59.0 (45.5) 4.78 (0.038) -0.131 (0.897)  0.563 (0.582)
19.7 (5.7) 21.0 (4.6) 0.471 (0.498) 24.1(5.1) 21.9 (5.3) 1.32 (0.260) -2.426 (0.031)  -1.195(0.252)
867.1(427.4) 565.2 (291.3) 5.57 (0.025) 897.2 (491.2) 531.2 (409.4)  4.79 (0.038) -0.131 (0.897)  0.563 (0.582)
75.9 (35.1) 53.7 (29.0) 3.84 (0.059) 60.2 (28.8) 51.7 (38.9) 0.438 (0.514) 1.133(0.278)  0.921(0.372)
16.5 (5.1) 18.4 (4.1) 1.25(0.272) 15.1 (4.8) 20.1 (6.3) 5.83(0.023) 1.117 (0.284)  -0.838 (0.416)
303.5 (140.3) 214.7 (116.1) 3.84 (0.059) 240.7 (115.1) 206.8 (155.8)  0.438 (0.514) 1.133(0.278)  0.921(0.372)

Note: BED = binge eating disorder, CON = control, Kcal = kilocalories, CHO =
carbohydrate, gm = grams, SD = standard deviation, F = between groups F-test, t =
within groups paired sample t-test, Kcal values were estimated from measured
macronutrient values in gm using the following standard conversions: 4 kcal/gm CHO, 4
kcal/gm protein, 9 kcal/gm fat.
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Table 26: Mean differences of total energy and macronutrient intake between laboratory
and dietary recall methodologies

Directional Difference

Absolute Value of Mean Difference

BED CON BED CON

MD (SD) MD (SD) F(1,28)(p) |MD|(SD) IMD| (SD) F (1,28) (p)
Total keal ~ 215.7(939.0) 160.9 (502.4)  6.03 (0.021)  779.1 (527.5)  438.6(272.1)  3.83 (0.061)
Total grams  54.0 (190.7)  35.4(100.6) 0.11(0.744)  158.9(110.9)  87.3(57.6) 4.87 (0.036)
CHO (g) 422(1147)  28.0 (68.5) 4.21(0.050)  97.0 (70.3) 56.8 (45.6) 2.30 (0.141)
Fat (g) -1.5(43.2) 3.4(23.3) 5.00(0.034)  35.0 (23.4) 19.4 (12.4) 6.99 (0.014)
Protein (g) 133 (43.9)  4.02(16.9) 4.00 (0.055) 30.7 (33.2) 14.1 (9.6) 4.85 (0.036)

Note: BED = binge eating disorder, CON = control, Kcal = kilocalories, g = grams, CHO
= carbohydrate, SD = standard deviation, MD = mean difference between laboratory and
dietary recall, [MD| = absolute value of mean difference between laboratory and dietary

recall.
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Table 27: Patterns of energy consumption throughout the day: Pre-binge, binge, and post-
binge food intake

Food intake (kcal) BED CON BED vs. CON
Mean (SD) Mean (SD) F (1,28) (p)

Pre-binge 1188.9 (449.9) 1038.0 (346.3) 1.032 (0.319)

Binge 2091.1 (1044.1) 1312.8 (847.5) 4.889 (0.036)

Post-binge 182.6 (152.0) 270.7 (338.6) 0.798 (0.380)
Correlations BED CON Overall

r(p) r(p) r(p)
Pre-binge and binge -0.145 (0.620) 0.576 (0.025) 0.206 (0.284)
Post-binge and 0.107 (0.715) 0.505 (0.055) 0.234 (0.222)
binge
Pre and post-binge 0.616 (0.019) 0.564 (0.028) 0.465 (0.011)

Note: BED = binge eating disorder, CON = control, Kcal = kilocalories, SD = standard
deviation, r = Pearson’s correlation coefficient.
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Chapter 6: Binge eating disorder mediates links between
symptoms of depression, anxiety, and caloric intake in
overweight and obese women

Adapted from: Roseann E. Peterson, Shawn J. Latendresse, Lindsay T. Bartholome, Cortney S.
Warren, Nancy C. Raymond. Binge eating disorder mediates links between symptoms of
depression, anxiety, and energy intake in overweight and obese women. Journal of Obesity [Epub
2012 Apr 12]

ABSTRACT

Despite considerable comorbidity between mood disorders, binge eating disorder (BED)
and obesity, the underlying mechanisms remain unresolved. Therefore, the purpose of
this study was to examine models by which internalizing behaviors of depression and
anxiety influence food intake in overweight/obese women. Thirty-two women (15 BED,
17 controls) participated in a laboratory eating-episode and completed questionnaires
assessing symptoms of anxiety and depression. Path analysis was used to test mediation
and moderation models to determine the mechanisms by which internalizing-symptoms
influenced kilocalorie (kcal) intake. The BED group endorsed significantly more
symptoms of depression (10.1 vs. 4.8, p=0.005) and anxiety (8.5 vs. 2.7, p=0.003). Linear
regression indicated that BED diagnosis and internalizing-symptoms accounted for 30%
of the variance in kcal-intake (F(3,28)=4.002, p=0.017). Results from path analysis
suggested that BED mediates the influence of internalizing-symptoms on total kcal-intake
(empirical p<0.001). The associations between internalizing-symptoms and food intake
are best described as operating indirectly through a BED diagnosis. This suggests that
symptoms of depression and anxiety influence whether one engages in binge eating,
which influences kcal-intake. Greater understanding of the mechanisms underlying the
associations between mood, binge eating and food intake will facilitate the development
of more effective prevention and treatment strategies for both BED and obesity.
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INTRODUCTION

Although there is considerable comorbidity between obesity, eating disorders and other
major psychiatric disorders, the mechanisms underlying these associations have yet to be
resolved. Binge eating disorder (BED), often associated with elevated body weight and
mood disorders, is under consideration for inclusion in the Diagnostic and Statistical
Manual of Mental Disorders, fifth edition (DSM-V). BED is defined by the DSM-IV as a
provisional eating disorder diagnosis characterized by recurrent episodes of binge eating
without weight control compensatory behavior and includes: (1) “eating, in a discrete
period of time (e.g., within any 2-hour period), an amount of food that is definitely larger
than what most people would eat during a similar period of time and under similar
circumstances,” and (2) “a sense of lack of control over eating during the episode”. In
addition, individuals with BED must experience distress about their binge eating and
endorse three of the following symptoms: eating more rapidly than normal, eating until
uncomfortably full, eating large amounts when not hungry, eating alone because of
embarrassment, and feeling disgusted, depressed or guilty about overeating (87).

Although obesity is not a requirement for a BED diagnosis, research indicates that
approximately 70% of those meeting criteria for BED are obese (21). While the
prevalence of BED in community samples ranges from 2-5%, approximately 30% of
obese individuals seeking weight control treatment meet criteria for BED (88, 89). The
recurrent overeating that characterizes BED, along with the absence of compensatory
behaviors exhibited by those with bulimia nervosa (BN), is most likely responsible for
the high frequency of obesity in this group. Laboratory studies have demonstrated that
obese BED individuals consume significantly more kilocalories (kcal) during an
overeating episode than obese individuals without a BED diagnosis (285, 288, 290, 292,
305, 306, 308-310).

Psychiatric disorders, including depression and anxiety, have been associated with
obesity and BED. The lifetime prevalence of major depressive disorder (MDD) and
anxiety disorders in the United States is estimated at 17% and 29%, respectively (90).
However, within obese populations, reported lifetime prevalence rates are increased to
32.8% for depression and 30.5% for anxiety (20). Additionally, Strine ef al. found adults
with a current or lifetime diagnosis of depression or anxiety were significantly more
likely to engage in unhealthy behaviors such as physical inactivity and to be obese (20).
Furthermore, research shows obese individuals with comorbid BED have even greater
rates of depression and anxiety than obese individuals without BED (21, 295, 311-313).
For example, Grilo et al. report, in a study of 404 BED patients, that lifetime history
estimates were elevated to 52% for mood and 37.1% for anxiety disorders (311).

Despite general acknowledgment of the associations between body weight, BED
and comorbid psychiatric disorders, the mechanisms underlying these relationships
remain largely unknown. Previously, we have reported that overweight/obese women
with BED consume significantly greater kcal-intake during a laboratory eating-episode
than weight-matched women without BED (2305 vs. 1462 kcal) (310). To extend this
work, we assessed symptoms of depression and anxiety in this sample and sought to
examine how internalizing behaviors and BED may be associated with kcal-intake during
the laboratory eating-episode. Based on the literature, we hypothesized that participants
meeting BED criteria would endorse significantly more symptoms of depression and
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anxiety than weight-matched non-BED controls. However, the impact of a BED
diagnosis and symptoms of depression and anxiety on kcal-intake was less clear as there
are several potential mechanisms responsible for the association. It is possible that
increased kcal-intake is the result of BED symptomatology. For instance, those with BED
may use binge eating to alleviate or escape symptoms of depression and anxiety.
Additionally, in converse, it is possible that BED symptomatology such as distress
regarding lack of control over eating specifically elevates internalizing symptoms. For
example, depression may increase food intake through increased appetite, a clinical
feature of atypical depression subtype. Furthermore, it is possible that having both a BED
diagnosis and elevated symptoms of depression and anxiety synergistically influence
food intake in a non-additive manner.

A common statistical approach to examining relationships between variables is
path analysis, in which alternative models can be applied to evaluate theoretical
relationships and determine directionality of effects. We assessed three alternative
models, depicted in Figure 13, to determine the mechanism of association that best fit our
data. Path analysis was employed to evaluate three potential models: 1) The symptoms of
depression and anxiety increase susceptibility to BED, which in turn influences caloric
intake (Figure 13a), 2) A BED diagnosis influences symptoms of depression and anxiety,
which subsequently influences caloric intake (Figure 13b) and 3) A BED diagnosis and
symptoms of depression and anxiety function interdependently in relation to energy
intake (Figure 13c).

METHODS
Participants

Participants were recruited by newspaper and online advertisements inviting
women at least 50 pounds overweight and between the ages of 18 and 45 to participate in
a paid research study. Thirty-two women, including 15 meeting DSM-IV criteria for BED
and 17 overweight/obese controls with no history of any binge eating or eating disorder
behaviors, participated in the study. These women were recruited as part of a larger study
examining food intake and energy expenditure measured via the doubly labeled water
method (277, 310).

Group Assignment

Potential participants were interviewed with the Structured Clinical Interview for
DSM-1V Axis I Disorders, Patient Edition (SCID-I/P) (301) , and the Eating Disorder
Examination (EDE), Version 12.0D (303) to determine study eligibility and group
assignment. Additionally, a medical history, physical exam and battery of laboratory
tests were completed to detect unstable medical conditions, such as diabetes and impaired
thyroid function, which would influence eligibility. Participants were excluded from the
study if they had any unstable medical or psychiatric conditions, met DSM-IV criteria for
substance abuse or dependency within 6 months of participation, or were currently
dieting or participating in a weight loss program. Those with any history of BN or
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compensatory behaviors were also excluded. Non-BED controls were free of any current
or past eating disorder symptoms. The protocol was reviewed and approved by the
Institutional Review Board at the University of Minnesota and all participants took part
in the informed consent process and signed a consent form. Participants were paid $300
upon completion of the entire study protocol.

Laboratory binge eating episode

This study utilized a protocol our group has previously reported (293, 306, 310).
In brief, participants were interviewed by a research dietician regarding their general
eating patterns and foods on which they typically snacked or overate. They indicated
which items from a standardized list of snack foods appealed to them and could suggest
extra foods or recipes. Based on the information gathered during the interview, a tray of
binge foods was created for each participant incorporating their personalized snacking
preferences. Each participant received 6 to 10 different kinds of food on their snack tray.
Food items were presented in excessive quantities (two to three times what they endorsed
eating during a binge) to ensure binge size was not limited by quantity of food.

Participants were admitted to the General Clinical Research Center (GCRC) for
an overnight stay to participate in several study activities. They were instructed not to
consume any food or caloric beverages between 12 and 5 PM. At approximately 5:30 PM
they were presented with a multiple item array of foods, including their personalized
binge tray and a standard hospital dinner, and were instructed to “Let yourself go and eat
as much as you like.” They were left alone in a private room to eat for as long as they
liked and signaled the nursing staff when they were finished. The GCRC metabolic
kitchen staff measured pre and post-prandial quantities of food. Caloric and
macronutrient intake for the laboratory eating episodes were calculated using Nutritionist
IV (304).

Self report measures of depression and anxiety

During the initial evaluation participants completed the Beck Depression
Inventory (BDI) and the Beck Anxiety Inventory (BAI) which are widely used self-report
questionnaires consisting of items addressing how one has been feeling in the last week
and measures the severity of depression and anxiety symptoms (314, 315). The scales
have high internal consistency coefficients (i.e., BDI upwards of 0.80) and validity with
other clinical assessments (316, 317). Scores on these indices range from 0 to 63 and
correspond to normal (0-9 BDI, 0-7 BAI), mild (10-18 BDI, 8-15 BAI), moderate (19-29
BDI, 16-25 BAI) and severe (30-63 BDI, 26-63 BAI) depression and anxiety.

Analytic strategy and model validation

A set of three, theoretically driven path models (see Figure 13) were tested using
Mplus version 5.0 (318). As MacKinnon and colleagues (319) have suggested, the
traditional causal steps approach (320, 321) may lack the statistical power to detect some
meaningful indirect effects. The mediation analyses presented here utilized the product
of coefficients strategy (319, 322) to evaluate the extent to which a predictor influences
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an outcome through some intermediary variable (Figure 13a and b). In doing so, the
indirect effect is derived by taking a ratio of the product of the path coefficients from (1)
the independent variable to the mediator and (2) the mediator to the dependent variable
over the normal-theory standard error for that product [i.e., (1*[2)/SE1+2)], the results
of which are evaluated with respect to the Z-distribution. Moderation (Figure 13c) was
assessed via the partial path coefficient for a product term (i.e., f/SE,) in the presence of
its individual components, and evaluated with respect to a ¢-distribution.

To protect against potential bias introduced by the small size of our sample,
evidence of significance was assessed via permutation testing (153). From the original
observed data, ten thousand novel datasets were generated via the random reordering of
individuals’ values on BED and kcal intake. This procedure was performed in R version
2.9.1 (323). Each of the permuted datasets can thus be reanalyzed within Mplus version
5.0 (318), with respect to the three alternative models depicted in Figure 13, and the test
statistics from each iteration can be used to generate null distributions for each of the
effects being scrutinized. Criteria for significance (i.e., empiric p-values) can be
calculated using the formula (p+1)/(n+1), where p is the number of null tests that are
more significant than the test conducted with the original data, and n is the total number
of permutations (i.e., 10,000) on which the analyses are rerun. As a result, we are able to
assess whether each of the hypothesized models would achieve significance in a much
larger sample (i.e., 320,000), given the characteristics of our observed sample.

RESULTS
Descriptive statistics

Of the thirty-two women participants, 27 were European-American, 3 were African-
American (9.4%) and 2 were Asian-American (6.3%). Means and standard deviations for
total energy intake, depression and anxiety scores, and potential covariates (i.e., age and
BMI) are presented by BED diagnosis on the diagonal in Table 28. ANOVA indicated
that there were significant group differences in depression scores (10.1 vs. 4.8, F(1,30) =
9.308, p = 0.005) and anxiety scores (8.5 vs. 2.7, F(1,30) = 10.830, p = 0.003) with BED
participants having significantly higher mean scores than controls across these indices.
No between-group differences were found regarding BMI (£(1,30) = 3.203, p = 0.784) or
age ( F(1,30)=10.737, p = 0.674). Table 29 reports the prevalence of lifetime clinical
depression and anxiety diagnoses by group. The BED group had significantly greater
prevalence of mild depression (60 vs. 17.6%, x> = 6.10, p = 0.014), mild/moderate
anxiety (33.3 vs. 5.9%, y* = 3.94, p = 0.047) and anxiety disorders (46.7 vs. 11.8%, x> =
4.80, p = 0.028). A detailed examination of food intake and energy expenditure in these
participants are reported in additional manuscripts from our group (277, 310)

Pearson’s correlation coefficients for bivariate associations between study
variables are presented in the off-diagonal cells in Table 28. Within each cell,
associations are presented separately for participants diagnosed with BED (top), weight-
matched controls (middle) and across the entire sample (bottom). Significant positive
correlations were found between kcal intake and depression, kcal intake and anxiety, and
depression and anxiety within the full sample. When assessed within groups, no
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significant correlations were found except between depression and anxiety scales in the
control group. Since neither BED nor internalizing symptoms were associated with age
or BMI, these latter variables were not included in the path models described below.

Model fitting

Separate path models were run to test (a) the intermediary role of BED in
associations between depression and anxiety symptoms and caloric intake, (b) the
intermediary role of depression and anxiety symptoms in associations between BED and
caloric intake, and (c) the interactive influences of BED and symptoms of depression and
anxiety on caloric intake. In each case, the theoretical model accounted for a significant
amount (~30%) of the variance in energy intake. However, examination of the three
alternative theoretical models revealed important mechanistic differences in the
relationship between BED and symptoms of depression and anxiety as they serve to
jointly influence energy intake. Results of the models (Table 30) depicted in Figure 13a
and b suggest that while kcal intake is significantly influenced by both depression and
anxiety symptoms (Biosai, depression = 0.409, p = 0.006; Brosar, anxiery = 0.399, p = 0.003) and
binge eating status (B, sep = -0.508, p < 0.001), the effects attributed to symptoms of
depression and anxiety operate, in large part, through the influences they have on BED
(ﬁindirect, depression via BED — 0197; pP= 0052, ﬁindirect, anxiety via BED — 0212; pP= 0046) Note
that the sign of the effects reflect coding of 1 for BED and 2 for controls in all analyses.
That is, roughly half of the influence of depression (~48%) and anxiety (~53%) on caloric
intake is mediated through BED. In contrast, the influence of BED status on caloric
intake appears not to be mediated by symptoms of depression or anxiety (Bidirect, BED via
depression = -0.103, p = 0.282; Bindirect, BED via anxiery = -0.096, p = 0.329); rather, those direct
effects remained StrOHg (ﬁdirect, BED with depression = '0404; pP= 00275 ﬁdirect, BED with anxiety =-
0.411, p=0.014). Results of the model depicted in Figure 13c indicate that BED and
symptoms of depression and anxiety do not interdependently influence caloric intake.
That is, neither the model including depression, nor the model including anxiety yielded
significant partial path coefficients for an interaction between BED and the
corresponding depression or anxiety symptoms (Bgep x depression = -0.279, p = 0.598; Brep «
anxiety = -0.268, p = 0.609) after taking into account their combined main effects; in each
case, accounting for less than 1% of the total variance.

As described above, post-hoc analyses were conducted with 10,000 permuted
datasets to determine whether the results observed with respect to the first theoretical
model (i.e., BED mediating the association between symptoms of depression and anxiety
and caloric intake) were simply due to chance and/or an artifact of the modest size of the
present sample. The null distributions generated from these analyses suggested that the
indirect effects of both depression and anxiety through BED were highly significant, as
far fewer than 5% of the tests exceeded the p-values observed in the original data. In
fact, of the 10,000 randomly generated datasets, only seven yielded indirect effects of
depression through BED that were more significant than the effect observed in the
original data (p = 0.0008), with only thirty-eight indirect effects of anxiety on BED
exceeding the observed level of significance (p = 0.0009).
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DISCUSSION

The purpose of this study was to examine models by which internalizing symptoms of
depression and anxiety influence food intake in overweight/obese women. Our results
indicate that BED women endorse significantly more symptoms of depression and
anxiety. Additionally, linear regression indicated that BED diagnosis and internalizing-
symptoms accounted for 30% of the variance in kcal-intake. Furthermore, results from
path analysis imply that BED mediates the influence of internalizing-symptoms on total
kcal-intake, which suggests the associations between internalizing-symptoms and food
intake are best described as operating indirectly through a BED diagnosis.

The present study found that overweight/obese women with BED endorsed more
symptoms of depression and anxiety than non-BED weight-matched controls. Mean
scores for the BDI and the BAI indicated mild depression and anxiety in the BED group
but normal levels in the control group. Other studies have found elevated depression and
anxiety scores in BED individuals (285, 292, 312, 313, 324, 325). For example, in a study
by Fandino et al., depression and anxiety scores were significantly greater in the BED
group than the obese control group as assessed by the Symptom Checklist 90 and the BDI
(325). The lifetime prevalence of MDD in the BED and control groups was 46.7% and
29.4% respectively. These rates are similar to previous reports in BED (21, 295, 311-
313) and non-BED obese groups (20). Lifetime prevalence of anxiety disorders was
similar to rates of depression in the BED group (46.7%) but was much lower in the
control group (11.8%). It is possible that the lower rates of anxiety disorders in the
control group were due to the inclusion of overweight women or was an artifact of the
limited sample size.

Laboratory studies have demonstrated that those with BED have greater total food
intake than obese controls when instructed to overeat (285, 288, 290, 292, 305, 306, 308-
310). Two such studies have reported on both food intake and depression symptoms (285,
292). In a sample of 10 obese BED women and 9 obese controls, Yanovski ef al., found
that the BED group consumed significantly more kcals (2962 vs 2017) and had
significantly greater depression scores as measured by the BDI (18.9 vs 5.4) than
controls. Additionally, they observed significant positive correlations between kcal intake
and BDI score (r* = 0.41) and between binge meal energy intake and BDI (r* = 0.28).
Geliebter and colleagues compared consumption of a liquid test-meal for 30 obese BED
individuals (18 women) and 55 obese controls (43 women). The BED group consumed
significantly more grams (1,032 vs 737) of the liquid test meal and endorsed significantly
higher depression scores assessed by the Zung Depression Scale. However, a significant
correlation between test meal intake and depression score was not found. The
discrepancy could be due to several study design differences, including proportion of
BED and control participants, inclusion of men and type of food intake (solid vs. liquid
meal).

Furthermore, results from linear regression indicated that BED diagnosis and
symptoms of depression and anxiety accounted for a significant amount (~30%) of the
variance in caloric intake. However, examination of the three alternative models revealed
important mechanistic differences in the relationship between BED, symptoms of
depression and anxiety and subsequent energy intake. The model that best fit our data
indicated that BED mediated the influence of depression and anxiety symptoms on total
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kcal intake (Figure 13a). Specifically, our results suggest that the associations found
between symptoms of depression and anxiety and food intake are best described as
operating indirectly through a BED diagnosis. That is, symptoms of depression and
anxiety influence whether one engages in pathological binge eating, which, in turn,
influences caloric intake. Our findings did not support model b (BED predicted
symptoms of depression and anxiety which, in turn, influence kcal intake) or model ¢ (a
significant interaction between symptoms of depression and anxiety and BED as being
predictive of kcal intake).

These results highlight the importance of mood in relation to a BED diagnosis and
subsequent caloric intake. Other research has also implicated mood in BED. Telch et al.
interviewed 60 obese women with BED regarding their definition of binge eating and
33% reported it as eating to regulate negative affect (326). With the advent of Ecological
Momentary Assessment procedures (EMA), prospective data on precursors to binge
eating in the natural environment have been collected (327-331). A study by Stein et al.
found in 33 obese women with BED that negative mood was significantly greater at pre-
binge times than at non-binge times and that participants attributed binge eating to mood
more frequently than hunger or violation of extreme dietary restraint (abstinence
violation) (329). Additionally, a study by Hilbert and Tuschen-Caffier, found that mood
preceding a binge eating episode was more negative than mood prior to regular eating or
at random assessments in a sample of 20 obese women with BED (330). Furthermore, in
a meta-analysis of 36 EMA studies of BED and BN, negative affect was significantly
greater preceding binge-eating relative to average affect and affect before regular eating
(331). A growing body of literature implicates negative affect as a precursor to binge
eating in BED.

The implications of the present study are potentially relevant to the clinical
treatment of BED and obesity. Research has indicated that mood and eating disorder
diagnoses affect weight loss and other treatment efforts. For example, Pagoto et al.
reported that both BED and depression were associated with less weight loss and
depression was associated with study attrition (332). Furthermore, in BED treatment,
depression symptoms have been associated with both attrition from cognitive-behavioral
therapy and severity of eating disorder psychopathology (333). The current results
suggest that targeting mood may be useful in the treatment of BED and accentuate the
importance of considering mood and BED status in weight management.

Among the major strengths of this study were utilizing path analysis to test
relationships between BED, symptoms of depression and anxiety and kcal intake as well
as using permutation procedures for model validation and statistical support. EMA
studies have consistently demonstrated negative affect as a precursor to binge eating
(331) in BED. However, these studies have relied on self-report of food intake. Research
indicates that obese and BED populations tend to underreport their food intake (276-280,
310, 334, 335). Therefore, a further strength of this work was the inclusion of laboratory
measured food intake to avoid inaccuracies often associated with self-report of dietary
intake. Potential limitations include limited sample size and age range, exclusion of male
participants and use of self-report questionnaires to measure symptoms of depression and
anxiety. Future research is warranted to confirm our findings and should seek to compare
energy intake and depression and anxiety in both women and men. Greater understanding
of the mechanisms underlying the associations of depression and anxiety symptoms,
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binge eating and caloric intake will facilitate the development of more effective
prevention and treatment strategies for both BED and obesity.
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TABLES AND FIGURES

Figure 13: Theoretical models of the associations between internalizing symptoms, binge
eating and caloric intake

Binge Eating
(a) Diagnosis

Kcal
Intake

Internalizing
Symptoms

(b)

Kcal
Intake

Binge Eating
Diagnosis

Internalizing
c Symptoms

Binge Eating Kcal
Diagnosis Intake

Internalizing
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Figure 18. Theoretical models examined: (a) binge eating disorder mediates the
associations between internalizing symptoms and kilocalorie intake, (b) internalizing
symptoms mediate the association between binge eating disorder and kilocalorie intake,
and (c) binge eating disorder interacts with internalizing symptoms in the prediction of
kilocalorie intake. Note: Internalizing = symptoms of depression and anxiety.
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Table 28: Group means and inter-correlations for study variables

1

1. Age 30.1 (6.7)
31.3(8.5)

2. Body Mass Index (kg/m®) -0.17
-0.14
-0.15

3. Depression Symptoms -0.09
0.06
-0.04

4. Anxiety Symptoms -0.05
0.35
0.04

5. Kilocalorie Intake -0.10
-0.26
-0.19

34.3(5.5)
34.9(7.2)

-0.33
0.34
0.04

-0.29
0.24
-0.08

-0.06
0.54*
0.02

10.1 (4.8)
4.8 (5.0)

0.34
0.66**
0.57%**

0.28
0.15
0.41*

4 5
8.5 (6.5)
2.7(3.1)
0.27
2305.1 (834.0)
0.00
1461.8 (641.9)
0.40%

*p<0.05; ** p<0.01; *** p<0.001

Note: Off-diagonal cells depict Pearson’s correlation coefficients for participants
diagnosed with binge eating disorder (top; n = 15), controls (middle; n = 17), and the
overall sample (bottom; n = 32); values on the diagonal reflect means and standard
deviations for cases (top) and controls (bottom), with bold-face type indicating group
differences (p < 0.01) as assessed via F-statistic with 1, 30 degrees of freedom.
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Table 29: Lifetime clinical depression and anxiety diagnoses by group

BED Control
Diagnosis n n Chi-square p-value

(%) (%)
BDI-Mild (609%) (17.36%) 6.10 0.014
EAI?IIcI-/Moderate (33.53%) (5;%) 3.94 0.047
MDD (46.77%) (29'54%) 1.01 0.314
Dep NOS (6.;%) (09@ 1.17 0.279
GAD (6.;%) (0(3@ 1.17 0.279
Social Phobia (26.47%) (5;%) 2.61 0.106
Specific Phobia (13'23%) (O((;)) 2.42 0.120
Panic Disorder (6.;%) (O((;)) 1.17 0.279
PTSD (6.;%) (0(3@ 1.17 0.279
Anx NOS (0(3@ ( li%%) 1.88 0.170
Any Dep Dx (53'83%) (29'54%) 1.89 0.169
Any Anx Dx (46.77%) (11%%) 4.80 0.028
Any Dep/Anx Dx (661.(7)%) (352%) 3.14 0.077

Note: BED = binge eating disorder, Chi-square = Pearson’s Chi-square 1 degree of
freedom test, BDI-Mild = mild depression as assessed by the Beck Depression Inventory
which corresponds to scores 10-18, BAI-Mild/moderate = mild to moderate anxiety as
assessed by the Beck Anxiety Inventory which corresponds to scores 8-25, MDD = major
depressive disorder, Dep NOS = depressive disorder not otherwise specified, PTSD =
post traumatic stress disorder, Anx NOS = anxiety disorder not otherwise specified, Any
Dep Dx = any DSM-IV depressive disorder diagnosis, Any Anx Dx = any DSM-IV
anxiety disorder diagnosis, Any Dep/Anx Dx = any DSM-IV depressive or anxiety
disorder diagnosis, dysthymic disorder and obsessive compulsive disorder were omitted
from table because no participants met criteria for these disorders.
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Table 30: Standardized effects coefficients, standard errors and corresponding p-values

for mediation models

Mediator

BED
BED

Depression

Anxiety

Total Effect Direct Effect Indirect (Mediated) Effect
B SE  p-value® B SE  p-value® B SE  p-value® eml\o/ ;rlilj:ll) P
0.409 0.150 0.006 0.212 0.183  0.247 0.197 0.101  0.052 0.0008
0.399 0.136 0.003 0.187 0.181 0.301 0.212 0.106 0.046 0.0009
-0.508 0.136 <0.001 -0.404 0.182  0.027 -0.103 0.096 0.282 ---
-0.508 0.136 <0.001 -0.411 0.168 0.014 -0.096 0.099 0.329 ---

* corresponding to the two-tailed test statistics for models run with sample data.
® corresponding to the two-tailed test statistics for a series of analyses with 10,000

permuted datasets.

Note: BED = binge eating disorder, Signs of effects reflect coding of BED status as 1 and

control as 2 in all analyses.
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Chapter 7: Genetic and environmental associations between
body mass index, depression symptoms and impulsivity in a
population-based sample of twins: VA30k

Adapted from: On the association of body mass index and depression in a population-based
sample of twins. Roseann E. Peterson, B.A., Hermine H. Maes, Ph.D., Lindon J. Eaves, Ph.D.,
D.Sc., Presentation, June 19, 2009. Behavior Genetics Association. Minneapolis, Minnesota.

ABSTRACT

Obesity and major depressive disorder each represent diseases with complex
etiologies which pose a significant burden to public health, affecting 33 and 16 percent of
Americans, respectively. Reported heritability estimates are moderate-to-high and studies
suggest both positive and negative correlations of these traits. Impulsivity is likely
involved in the link between obesity and depression, as it has been associated with each.
Despite numerous phenotypic associations between these traits, there has been a lack of
reports in the literature investigating genetic and environmental associations between
these phenotypes. Therefore, the purpose of this research was to use twin study
methodology to investigate if shared genetic and/or environmental liability is potentially
responsible for phenotypic associations found between relative body weight, depression
symptoms, and impulsivity. Participants were ascertained through the Virginia Twin
Registry and a volunteer twin sample solicited through the American Association of
Retired Persons (n=14,457 twins, 63.8% female). Female respondents were found to have
significantly lower body mas index (BMI) and impulsivity scores (Eysenck Personality
Questionnaire), but significantly higher depression symptom scores (Symptoms
Checklist) than males. A significant quadratic relationship was found between BMI and
depression symptoms, indicating that those with the highest and the lowest BMI were
more likely to have greater depression scores. Bivariate twin modeling results did not
indicate a significant genetic or environmental correlation between BMI and depression
symptoms. However, significant genetic and environmental correlations were found
between BMI and impulsivity (rG =0.115, rE=0.046) and a significant genetic correlation
between depression and impulsivity (rG=0.075). Trivariate independent pathway twin
modeling indicated shared genetic and environmental liability between these traits,
although, some sex differences were observed. A common genetic factor accounted for 2-
16% of the genetic variance in these traits. For females, an environmental factor common
to BMI and impulsivity accounted for 0.5% of the environmental variance in BMI and
62% in impulsivity. For males, an environmental factor common to depression symptoms
and impulsivity accounted for 0.5% of the environmental variance in depression
symptoms and 56% in impulsivity. Our findings warrant future research in order to
confirm these results in additional cohorts as well as to examine how shared genetic risk
may impact gene identification efforts.
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INTRODUCTION

Obesity and major depressive disorder (MDD) represent serious public health problems
and research suggests a prominent sex difference in both, with women appearing to be at
increased risk (176, 336). According to the National Center for Health Statistics over
33% of American adults are considered obese while another 33% are overweight (127).
Obesity is a general medical condition, defined clinically by a body mass index (BMI)
greater than 30 kg/m?, and is associated with increased risk of numerous medical
conditions including cardiovascular disease, insulin-resistance, cancer, and poor quality
of life (12, 127). Similarly, depression is a debilitating psychiatric condition that has
demonstrated correlations with decreased quality of life, impaired social functioning,
eating disorders, substance abuse, and cardiovascular disease (295, 336-338). As reported
by the 2006 National Comorbidity Survey Replication, the lifetime history estimates of
MDD are 12.7% in men and 21.3% in women (90). However, within obese populations,
reported lifetime prevalence rates of depression have been shown to be elevated upwards
of 32% (20). Additionally, Strine et al. found adults with a current or lifetime diagnosis
of depression were significantly more likely to engage in unhealthy behaviors such as
physical inactivity and to be obese (20). Cross-sectional studies of BMI and depression
have reported positive(93-97), negative (primarily in males) (98, 99) and no association
(100-102) between these traits. However, a population based study from the Netherlands
found a quadratic (U-shaped) association of BMI and depression indicating those with the
lowest and the highest relative body weight were more likely to present with depression.
In light of current DSM-IV MDD criteria, which include items related to increase and
decrease in appetite, weight and energy expenditure, it is feasible that BMI in
underweight and obese individuals may be associated with greater levels of depression
(103). Further research is needed to clarify the nature of the association between body
weight and depression.

A growing body of research implicates impulsivity in the development and
maintenance of obesity. A national study found 17% of the general American population
to be impulsive, with odds greater for men and those of younger ages (339). Impulsivity
has been considered a multi-dimensional construct consisting of several components:
urgency, lack of perseverance, lack of premeditation and sensation seeking (340). Obesity
has been associated with dimensions of impulsivity based on both self-report and
laboratory-based paradigms (341-348). For example, research conducted using the lowa
Gambling Task has shown obese groups tend to choose immediate rewards, even when
future long-term negative consequences are associated with them (342, 345).
Furthermore, impulsivity has been associated with dietary disinhibition and may
represent a mechanism by which impulsivity may influence body weight via the inability
to control what or how much one is eating (349). Dietary disinhibition, a construct from
the Three Factor Eating Questionnaire which reflects a responsiveness to food stimuli and
eating in response to emotional states (350), has been associated with BMI, obesity, over-
eating, decreased healthy food choices, and eating disorders including BED and BN, with
less weight loss and with lower levels of physical activity (for a literature review see
Bryant et al. 2007) (351, 352) .

Impulsivity has been shown to be comorbid with psychiatric disorders. A recent
report indicated 83% of those who endorsed impulsivity in a sample of American adults,
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also met criteria for lifetime history of at least one psychiatric disorder (339). Research
reports positive associations between impulsivity and depression. For example Peluso et
al., found significantly higher trait impulsivity, as assessed by the Barratt impulsivity
scale (BIS), in participants with comorbid bipolar and MDD than controls (353).
Additionally, work by our group found a significant positive correlation (r=0.354)
between BIS scores and depression symptoms, as measured by the Beck depression
inventory, in a sample of obese women with and without binge eating disorder (Peterson
et al., in preparation). Furthermore, impulsivity has been shown to be a predictor of
future MDD diagnosis (339, 354) and suicidality in depressed persons (355-358).

Research indicates that genetic factors influence individual differences in BMI,
depression and impulsivity. Twin, adoption and family studies have consistently shown a
significant genetic contribution to body composition with heritability estimates ranging
40 to 70% (34-36). Heritability estimates for depression symptoms have been estimated
between 30 and 40% (359) and for MDD between 40 and 50% (360). A large meta-
analysis of 11,100 adults indicated impulsivity was moderately heritable, with 31% of the
phenotypic variance due to additive genetic effects and 10% to dominance(361). Dietary
disinhibition, an impulsivity-associated trait, has been shown to be moderately heritable
with 45% of the variance due to additive genetic effects (362).

To date two family studies have examined the genetic and environmental
architecture of depression and body composition (363, 364). The first, by Choy et al.,
was based on 2383 participants from the Netherlands Erasmus Rucphen Family study and
did not find a significant genetic correlation between obesity and depression symptoms
measured by the Center for Epidemiologic Studies Depression Scale (CES-D) or the
depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) (363).
However, a study by Afari et al., using a sample of 993 female twin pairs from the
University of Washington Twin Registry, found significant phenotypic (OR=1.6,
95%CI=[1.2,2.1]) and genetic correlations (12%) between obesity and self-report
endorsement of “Has your doctor ever told you that you have depression? (364).” Despite
considerable phenotypic associations, there have been no twin and family studies
reported in the literature investigating the genetic and environmental associations
between BMI and impulsivity or depression and impulsivity. More research is needed to
determine if shared genetic and/or environmental liability is responsible for the
phenotypic associations found between these traits. Therefore, the purpose of this study
was to examine phenotypic associations and the genetic and environmental architecture
of BMI, depression symptoms, and impulsivity in a population based sample of twins, the
Virginia 30,000 (VA30k).

METHODS

Participants and phenotypes

Ascertainment for the VA30k sample was through two sources, a volunteer twin sample
solicited through the American Association of Retired Persons and the Virginia Twin

Registry. Participants completed the Health and Lifestyle Questionnaire, which included
abbreviated versions of the Symptoms Checklist (SCL-90) and the Eysenck Personality
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Questionnaire (EPQ). Depression symptom scores were calculated from 10 questions
from the SCL-90 depression sub-scale and impulsivity scores were calculated from 7
items from the EPQ impulsivity subscale. BMI, a standard measure of adiposity, was
calculated from self-reported height and current weight. BMI categories were determined
from standard clinical groups of underweight (<18.5), normal (18.5-24.9), overweight
(25-29.9), obese (30-39.9) and morbidly obese (>40). BMI and depression scores were
log transformed and impulsivity scores were arcsine transformed to meet assumptions of
normality. Analysis of variance (ANOVA) was used to determine if there were
significant differences in study variables by BMI category and age. Tukey’s HSD
multiple comparison procedure was used to infer in which groups the differences
occurred. To explore possible differences in depression symptom profiles between BMI
categories ANOVA was applied to individual depression symptom items.

Classical twin methodology

The use of family data allows trait variance to be partitioned into the familial versus
residual non-familial sources. In the classical twin design, covariances of MZ and DZ
twins are used to estimate the magnitude of genetic and environmental causes of family
resemblance (252). This methodology is premised upon monozygotic, or “identical”,
twins (MZ) sharing all of their genes, while dizygotic, or “fraternal”, twins (DZ) sharing
half of their genes on average, and MZ and DZ twins sharing trait-relevant environmental
experiences to the same extent (equal environment assumption). Following this logic, the
correlation between genetic components is modeled as1.0 for MZ twins and 0.5 for DZ
twins. Under the assumptions of random mating, no genotype-environment correlation or
interaction, and equal environments for MZ and DZ twins, a greater similarity between
MZ versus DZ twins is attributed to additive genetic effects (A). Common environmental
effects, as defined in biometrical twin modeling, refer to environmental influences that
make family members more similar to each other. Therefore, by definition, these
influences correlate 1.0 between both MZ and DZ twins. These shared environmental
influences (C) will contribute to twin similarity in both MZ and DZ twins and will tend to
increase DZ correlations relative to MZ correlations. However, non-additive genetic
effects, known as dominance (D), tend to reduce the DZ correlation relative to MZ twins.
The correlation of D is modeled as 1.0 between MZ twins and 0.25 for DZ twins. An
additional source of variance is the unique environment (E), which includes factors in the
environment that are not shared within families as well as random measurement error.
Unique environmental influences are uncorrelated between co-twins and have the effect
of decreasing the covariance between siblings. Furthermore, the principles of variance
decomposition for the univariate case may be extended to estimating the covariance
structure between multiple variables.

Model-fit

One approach to partitioning variance is to use structural equation modeling (SEM) and
path analysis, which allows for flexible specification of models that include both latent
(unobserved) and measured variables (253). In this study, SEM was used to examine the
genetic and environmental architecture of BMI, depression symptoms, and impulsivity
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for both univariate and multivariate modeling. Model parameters were estimated by full
information maximum likelihood using OpenMx(256) in R(210). The goodness-of-fit
was assessed by the likelihood-ratio test, which compares minus twice the log likelihood
(-2LL) of models. This approximates a y°-distribution and may be used for significance
testing. Additionally, the relative parsimony of alternative models was assessed by
Akaike’s Information Criterion (AIC), with smaller values indicating better fit.

Univariate twin modeling and sex-limitation

Univariate models were applied to estimate heritability of individual traits, test the
random sample assumption, and determine if there were significant sex differences in the
genetic and environmental architecture of the phenotypes. Under the assumption that the
twin sample reflects a random sample of the population, there should be no statistical
differences on phenotypic mean or variance by twin order or type (zygosity). To test this
assumption in the VA30k, phenotypic means and variances were equated by twin order
and zygosity to determine if the model fit is significantly worse when compared to the
model that estimated them freely. If no differences were found this suggested that the
random sample assumptions were met. If significant differences were found, then these
could indeed be due to the sample not being random or to some form of social interaction
(i.e., sibling cooperation). Furthermore, if there are significant differences in trait
variance by gender then it is possible that sex limitation may account for this difference.
Two sources of sex limitation are: (1) quantitative, also known as scalar sex limitation,
defined as sex differences in the magnitude of the genetic or environmental components
and (2) qualitative, or non-scalar sex limitation, regarded as differences in the actual sets
of genes or family environments that influence traits for males and females. For the latter
source of sex limitation, addition of opposite sex DZ twins (DZo) to analyses is
necessary. In designs of twins reared together, C and D sources of variance cannot be
estimated simultaneously. Therefore, ACE and ADE models were tested separately.
Along with ACE/ADE models, quantitative and qualitative sex differences were formally
tested for BMI, depression symptoms, and impulsivity.

Bivariate twin modeling

To test for genetic and environmental contributions to the covariance between two traits,
bivariate Cholesky decomposition was applied. This parameterization allows the
phenotypic variance to be partitioned into (1) genetic/environmental components that
account for variance in trait one and covariance with trait two and (2) a second
genetic/environmental component accounting for the residual variance in the second trait,
not accounted for by the first factors. As such, the ordering of the variables determines
the interpretation (i.e., how much of the genetic variation in trait two is shared with trait
one) %17 The specification of ACE/ADE models was dependent on best-fit models
from univariate modeling. To simplify the full model, A and C/D common and specific
factors and E common factors were dropped one-by-one from the model. Specific unique
environmental effects were not dropped as these include errors of measurement.

Trivariate twin modeling
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To test for shared genetic and environmental liability between BMI, depression
symptoms and impulsivity, multivariate Cholesky parameterization and independent
pathway (IP) models were fit to the data. Trivariate Cholesky decomposition was used as
baseline fit for I[P model comparison. As depicted in Figure 26, IP models were specified
to partition phenotypic variance into genetic and environmental factors that were shared
across all three phenotypes as well as components that were trait specific (243, 253).
These models allow for the contributions of the common factors on the measured
phenotypes to be different for each of the sources of variance, hence the name
‘independent pathways’. IP model fitting began with two common factors for each source
of variance, A, D and E, along with specific A, D and E for each variable. To simplify the
full model, A and D common and specific factors and E common factors were dropped
one-by-one from the model. As noted with previous models, specific unique
environmental effects were not dropped as these include errors of measurement.

RESULTS
Phenotypic associations between age, BMI, depression symptoms, and impulsivity

BMI data was available for n=14,457 twins, of whom n=9,227 (63.8%) were female. The
mean age was 52.3 and 48.9 years for females and males, respectively. As depicted in
Figure 14, females tended to be older than males (F(1,14357)=119.1, p=1.25x10"%).
Mean BMI was significantly lower for females (23.8 kg/m?) than for males (25.1 kg/m?)
(F(1,14455)=310.1, p=1.05x10"") and sex accounted for 2% of the phenotypic variance
in BMI. Figure 15 displays the distribution of BMI by weight category and sex. Based on
a definition of BMI greater than 30 kg/m?, 12% of the sample was considered obese. A
quadratic association was observed between age and BMI, which accounted for 5.5% of
the phenotypic variance in BMI (Figure 16).

Depression symptom scores, as assessed by the SCL-90 subscale, indicated that
females endorsed significantly higher rates of depression symptoms than males (14.0
females, 13.5 males, F(1,14118)=306.8, p=5.69x10°*). Additionally, age was found to be
significantly associated with depression symptoms. Specifically, depression scores tended
to be greater at younger ages (Figure 17). There was not a significant correlation between
BMI and depression scores in females. However, in males a small negative correlation
was observed (r=-0.06, p=1.8x10°). As depicted in Figure 19, the depression symptom
score was found to have a significant quadratic association with BMI, which accounted
for 0.2% of the phenotypic variance. Exploration of depression symptom profiles by BMI
category indicated similar endorsement of specific depression items for the underweight
and obese groups, except loss of sexual interest, which showed no association with BMI
status (Figure 22).

Impulsivity scores, as assessed by the EPQ subscale, indicated that males
endorsed significantly higher rates of impulsivity symptoms than females (0.459 females,
0.485 males, F(1,12670)=26.9, p=2.19x107"). In addition, age was found to be
significantly associated with impulsivity score, with greater impulsivity observed at
younger ages (Figure 18). As depicted in Figure 20, the impulsivity score was found to
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have a significant positive association with BMI, which accounted for 0.7% of the
phenotypic variance. Additionally, a small but significant correlation was found between
depression symptoms and impulsivity in females (r=0.045, p=6.0x10") and males
(r=0.070, p=2.2x10"). Standardized depression symptom and impulsivity scores are
displayed together by BMI category in Figure 21.

Univariate and sex-limitation twin modeling

The phenotypic means and variances of BMI are presented by twin order and zygosity
type in Table 31. Means and variances were equated across twin order and across
zygosity groups of the same sex without significant loss of model fit, indicating that
assumptions regarding random population samples had been met (Table 32). However,
means and variances could not be equated between males and females, which was
suggestive of possible sex effects. Therefore, sex limitation models were applied in order
to test for quantitative and qualitative differences between males and females. Variance
component modeling results are displayed in Table 33 (ACE) and Table 34 (ADE).
According to the AIC, the best fitting model was an AE model, with the genetic
correlation between males and females being estimated. The results indicated that
additive genetic effects accounted for 77% of the variance in females and 75% in males.
The genetic correlation between males and females was estimated at 0.820 (95% CI =
[0.697,0.956]), indicating significant qualitative sex differences although a considerable
amount of the additive genetic effects associated with BMI was shared between males
and females. These findings suggested that the increased phenotypic variance in females
was due, in part, to greater additive genetic variance.

The phenotypic means and variances of depression symptoms, as assessed by the
depression subscale of the SCL-90, are presented by twin order and zygosity type in
Table 35. Means and variances could be equated across twin order and across zygosity
groups of the same sex without significant loss of model fit (Table 36). However, means
and variances could not be equated between males and females, which was suggestive of
possible sex effects. Therefore, sex limitation models were applied to test for quantitative
and qualitative differences between the sexes. Variance component modeling results are
displayed in Table 37 (ACE) and Table 38 (ADE). Based on the AIC, the best fitting
models were an ACE model in females and an AE model in males, with the genetic
correlation between males and females equated to one, which indicates no qualitative sex
differences for additive genetic effects. Results indicated additive genetic effects
accounted for 28% and 36% of the variance in females and males, respectively, with
approximately 8% of the variance in females due to shared environment.

The phenotypic means and variances of impulsivity, as assessed by the subscale
of the EPQ, are presented by twin order and zygosity type in Table 39. Means and
variances could be equated across twin order and across zygosity groups of the same sex
without a significant drop in model fit (Table 40). However, means and variances could
not be equated between males and females, suggesting possible sex effects. Therefore,
sex limitation models were applied to test for quantitative and qualitative differences
between males and females. Variance component modeling results are displayed in Table
41 (ADE). According to the AIC, the best fitting models were an ADE model in females
and an AE model in males, with the genetic correlation between males and females
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equated to one. The results indicate additive genetic effects accounted for 8% and 32% of
the variance in females and males, respectively, with approximately 24% of the variance
in females accounted for by dominant genetic effects.

Bivariate twin modeling

Bivariate models were fit to BMI and depression symptoms and results are given in Table
42a. According to the AIC, the best fitting parameterization was model V, which
indicated there were no statistically significant shared genetic or environmental liabilities
between BMI and depression symptoms. The proportion of variance due to ACE factors
is shown in Figure 23.

Variance decomposition models of BMI and impulsivity are displayed in Table
42b. The best fitting model according to AIC was II1.b, which indicated that there were
statistically significant shared genetic (rG = 0.115, 95%CI = [0.053,0.178]) and
environmental correlations (rE = 0.046, 95%CI =[0.011,0.082]) between BMI and
impulsivity symptoms. The relative proportion of ADE components are depicted in
Figure 24. The proportion of the variance in impulsivity due to genetic effects shared
with BMI was 2.8% and 4.4%, in females and males respectively, corresponding to 8.3%
and 13% of the total genetic variance. The proportion of the variance in impulsivity due
to environmental effects shared with BMI was 1.9% for females (2.8% of total
environmental variance) and 1.5% for males (2.3% of total environmental variance).

Results of bivariate model-fitting for depression and impulsivity are displayed in
Table 42c. According to AIC, the best fitting model was IV, which indicated a
statistically significant shared genetic correlation (rG = 0.075, 95%CI = [0.003,0.151])
between depression and impulsivity symptoms. The variance decomposition is shown in
Figure 25. The proportion of the variance in impulsivity due to genetic effects shared
with depression symptoms was 1.3% for females and 2.2% for males, which
corresponded to 4.0% and 6.5% of the total genetic variance.

Trivariate twin modeling

To test for shared genetic and environmental liability between BMI, depression
symptoms and impulsivity, multivariate Cholesky parameterization and independent
pathway models were fit to the data. The parameter estimates and fit-statistics are
displayed in Table 43 and Table 44. The best fitting model according to the AIC was IP
model IV.b and is depicted in Figure 27. The results indicated a significant common
genetic factor that loaded on all traits, as well as, genetic effects specific to each
phenotype. The common genetic factor exhibited sex differences, in that the factor loaded
positively on all traits in females, but in males it loaded positively on impulsivity and
BMI but negatively on depression symptoms. In addition, a significant environmental
factor was found to load on impulsivity and BMI in females and on impulsivity and
depression symptoms in males, further demonstrating sex differences in the nature of
these traits.

The proportion of variance in BMI accounted for by ADE components is
displayed in Figure 28. In females, 77% of the variance in BMI was due to additive
genetic effects, of which 3.8% was due to shared effects with impulsivity and depression
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symptoms, 66.7% was specific to BMI, and 29.5% was female specific effects and 23%
of the variance was due to environmental components, of which only 0.5% was due to
effects shared with impulsivity. In males, 75% of the variance in BMI was due to additive
genetic effects, of which 16% was due to shared effects with impulsivity and depression
symptoms and 84% was specific to BMI. The remainder of the phenotypic variance was
due to a BMI specific environmental component (25%).

The ADE variance decomposition for depression symptoms is shown in Figure
29. In females, 35% of the variance was due to genetic effects, of which 2% was due to
an effect shared with BMI and impulsivity, and 65% of the variance was due to
environmental factors specific to depression symptoms. In males, the proportion of
variance due to genetic factors was 38%, of which, 1.5% was an effect shared with BMI
and impulsivity, 36% was accounted for by effects due to dominance, and 62.5% was an
effect specific to depression symptoms. The environment accounted for 62% of the
variance, of which, 0.5% was due to environmental effects in common with impulsivity.

The proportion of variance in impulsivity symptoms accounted for by ADE
components is depicted in Figure 30. In females, 32% of the variance was due to genetic
effects, of which 14% was from the common genetic factor, 15% from a specific additive
genetic component, and 71% due to specific dominance. The environment accounted for
68% of the variance, of which, 62% was due to the shared factor with BMI and the
remainder (38%) was an environmental component specific to impulsivity. In males, 32%
of the variance was due to genetic effects, of which, 12% was from the common genetic
factor and 88% from an impulsivity specific additive genetic component. The
environment accounted for 68% of the variance, of which, 56% was due to the shared
factor with depression symptoms and the remainder of the variance from an
environmental component specific to impulsivity (44%).

DISCUSSION

The purpose of this research was to examine phenotypic associations between BMI,
depression symptoms and impulsivity and to test for shared genetic and environmental
liability between these traits in a population-based sample of twins. As expected, our
results indicated that women had significantly greater depression symptoms and lower
impulsivity than men, and significant positive correlations between BMI and impulsivity,
and between depression symptoms and impulsivity were observed. However, rates of
obesity in the VA30k sample (12%) were lower than expected given current national
estimates (33%). According to national health reports, obesity rates doubled among
American adults between 1980 and 2000, which may explain, in part, the lower obesity
rate in the VA30k sample, as it was collected during this timeframe.

Reported associations between body weight and depression have been conflicted,
with reports of positive, negative and no association between them. Our results indicated
a curvilinear relationship between BMI and depression symptoms, signifying that those
with the highest and the lowest relative body weight were more likely to endorse
depression items. These findings are in agreement with a population-based study from the
Netherlands which found a robust U-shaped association between BMI and depression
symptoms. It is possible that the mixed findings on the nature of the BMI-depression
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relationship may be due, in part, to the assumption that there is a linear association
between these traits when indeed it may be curvilinear. Furthermore, examination of
depression symptom profiles by weight category indicated similar endorsement of
specific depression items for the underweight and obese groups. These findings suggest
that there may not be differences in depression profiles by BMI group but rather that
those with the highest and the lowest BMIs tend to endorse more symptoms overall.
Since both women and those with the highest and lowest BMI’s were more likely to have
increased depression scores, these groups might be targeted for prevention and
intervention efforts.

We applied multivariate twin methods to test for shared genetic and/or
environmental liability between these traits. The bivariate twin modeling results did not
indicate a significant genetic or environmental correlation between BMI and depression
symptoms. Our results are in agreement with a Dutch family study by Choy et al. which
did not find a significant genetic correlation between BMI and depression symptoms
(363). However, Afari et al. reported a significant genetic correlation between obesity
and self-report endorsement of clinical depression in a sample of female twin from the
USA, with this correlation accounting for 12% of the genetic variance (364). It is
conceivable that the discrepancies in findings are due in part to different measures of
depression (symptoms vs. diagnosis). Further research utilizing genetically informative
designs are needed to determine the genetic and environmental structure of comorbidity
between body composition and depression and, in particular, whether incorporating
depression symptoms versus clinical depression and its subtypes will reveal significant
differences in this architecture.

The results from our bivariate analyses on BMI and impulsivity indicated a
significant genetic correlation (rG =0.115) between these traits with 8.3% and 13% of the
genetic variance in impulsivity due to effects shared with BMI in females and males,
respectively. Additionally, a significant environmental correlation (rE=0.046) was also
found between these traits indicating ~2.5% of the environmental variance in impulsivity
was due to effects shared with BMI. Furthermore, when examining depression symptoms
and impulsivity a significant genetic correlation (rG=0.075) was observed, indicating 4%
and 6.5% of the genetic variance in impulsivity was due to effects shared with depression
symptoms in females and males, respectively. To our knowledge, this is the first twin
study to report on shared liability between BMI and impulsivity and between depression
symptoms and impulsivity.

The findings from our trivariate twin modeling indicated a significant common
genetic factor influencing all three traits. However, we observed significant sex
differences, as a positive association was found for all traits for females, but in males this
genetic factor was positively associated with BMI and impulsivity but negatively
associated with depression symptoms. This suggests that for females, a genetic
component exists which is associated with greater impulsivity, BMI and depression
symptoms, while in males this genetic component is associated with greater impulsivity
and BMI but with decreased depression symptoms. This common genetic factor
accounted for different proportions of the genetic variance in each trait as well as some
sex differences were observed. The proportion of the genetic variance accounted for by
this genetic factor was for BMI 3.8% in females and 16% males; for depression
symptoms ~2.5%; and for impulsivity 12-14%. In females, an environmental factor
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common to BMI and impulsivity accounted for 0.5% of the environmental variance in
BMI and 62% in impulsivity. In males, an environmental factor common to depression
symptoms and impulsivity was observed, accounting for 0.5% of the environmental
variance in depression symptoms and 56% in impulsivity. Our multivariate twin
modeling results suggest that there are shared genetic and environmental factors between
BMI, depression symptoms and impulsivity. Further research is warranted to confirm
these results in other cohorts as well as to examine how shared genetic and environmental
liability may impact gene identification efforts.

A number of extensions to this work should be applied to future research. First,
phenotypic associations in this sample indicated a significant quadratic effect of age on
BMI as well as significant negative associations with depression symptoms and
impulsivity. Future studies should incorporate these effects into modeling, in order to
potentially detect differences in genetic and environmental liability by age. Furthermore,
BMI and depression symptom scores were also found to have a curvilinear association.
There are known limitations of structural equation modeling for the handling of nonlinear
relationships. Additional research is needed to determine the effect of nonlinear
relationships on variance decomposition methodology and parameter estimates. In
addition, since classical twin designs may not model C and D components
simultaneously, future models might utilize the extended twin design to determine the
effect of each of these sources of variance on the covariance of these traits. Indeed, there
are alternative models that may be applied, including models incorporating moderating
effects of the environment as well as models of comorbidity (253, 365). For example,
longitudinal phenotypic studies have found a reciprocal association between obesity and
depression, suggesting that elevated BMI may increase depression and vice versa (91,
92). Therefore, future research should apply models of comorbidity and test direction of
causation in a genetically informative sample. To the best of our knowledge, this is the
first multivariate twin study to report on the genetic and environmental architecture of
BMI, depression symptoms and impulsivity. Our results indicate shared genetic and
environmental risk between these traits. Future research is warranted to confirm our
findings in additional cohorts and examine how shared genetic risk may impact gene
identification efforts.
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TABLES AND FIGURES

Figure 14: Percent of sample by age and sex
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Figure 15: Percent of sample by weight category and sex
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Figure 16: BMI by age and sex
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Figure 17: Depression score by age and sex
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Figure 18: Impulsivity score by age and sex
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Figure 19: Depression symptoms by weight category and sex
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Figure 20: Impulsivity score by weight category and sex

.80 - Sex
— Female
~—— Male

70

z

2

wv

E- 60

£

c

o

v

=
.50
.40

T T T T T
Under Normal Over Obese Morbid
Obese

Weight Category
Error bars: 95% CI

122

www.manharaa.com




Figure 21: Depression symptoms and impulsivity score by weight category
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Figure 22: Depression symptom profile by weight category
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Table 31: Means and variances by twin group for BMI in VA30k

Group Mean Tl  Mean T2

(pairs/singletons) (Variance) (Variance) Covariance = Correlation

MZ female 31.51 31.51 2.33 0.772
(1894/84) (3.07) (3.00)
DZ female 31.61 31.57 1.20 0.392
(1206/67) (3.10) (3.05)
MZ male 32.12 32.08 1.16 0.725
(795/18) (1.64) (1.58)
DZ male 32.15 32.15 0.70 0.382
(590/20) (1.80) (1.96)
DZ opposite sex 32.13 31.38 0.77 0.318
(1354/43) (2.00) (2.97)

Table 32: Testing model assumptions for BMI VA30k

Model EP -2LL Df AIC Diff LL  Diffdf p-value
Saturated 25 42190.8 11885  18420.8 - - -
Mean order 21 421932 11889 184152 24 4 0.66
Variance order 17 42194.8 11893  18408.8 3.96 8 0.86
Zyg same sex 13 42205.5 11897  18411.5 14.73 12 0.26
Within sex 9 422133 11901  18411.3  22.52 16 0.13
Across sex 7 42769.7 11903  18963.7  578.9 18 <0.01
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Table 35: Means and variances of depression symptoms by twin group

Group Mean Tl  Mean T2

(pairs/singletons) (Variance) (Variance) Covariance = Correlation

MZ female 0.527 0.521 0.042 0.325
(1910/67) (0.12) (0.12)
DZ female 0.511 0.538 0.029 0.220
(1203/69) (0.12) (0.13)
MZ male 0.397 0.404 0.033 0.345
(805/8) (0.09) (0.10)
DZ male 0.431 0.423 0.019 0.159
(590/20) (0.11) (0.10)
DZ opposite sex  0.430 0.541 0.019 0.154
(1362/35) (0.11) (0.12)

Table 36: Testing model assumptions (SCL-90)

Model EP -2LL df AIC Diff L. Diffdf p-value
Saturated 25 7546.5 11914  -16281.5 - - -
Mean order 21 7552.2 11918  -16283.8 5.75 4 0.22
Variance order 17 7559.6 11922  -16284.5 13.06 8 0.11
Zyg same sex 13 7567.5 11926  -16284.5  20.98 12 0.05
Within sex 9 7577.2 11930  -16282.8  30.69 16 0.01
Across sex 7 7844.8 11932 -16019.2 298.28 18 <0.01
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Table 39: Means and variances of impulsivity (EPQ) by twin group VA30k

Group Mean T1 Mean T2

(pairs/singletons) (Variance) (Variance) Covariance Correlation

MZ female 0.373 0.379 0.019 0.323
(1929/49) (0.061) (0.057)
DZ female 0.380 0.373 0.007 0.113
(1226/45) (0.064) (0.058)
MZ male 0.412 0.400 0.018 0.313
(803/7) (0.059) (0.056)
DZ male 0.426 0.410 0.012 0.189
(588/19) (0.057) (0.063)
DZ opposite sex 0.396 0.375 0.004 0.072
(1380/17) (0.059) (0.059)

Table 40: Testing model assumptions for impulsivity (EPQ)

Model EP -2LL df AIC Diff L. Diffdf p-value
Saturated 25 -193.3 11964  -24121.3 - - -
Mean order 21 -188.9 11968  -241249  4.42 4 0.35
Variance order 17 -182.4 11972 -24126.4  10.90 8 0.21
Zyg same sex 13 -180.2 11976  -24132.2  13.09 12 0.36
Within sex 9 -176.8 11980  -24136.8 16.58 16 0.41
Across sex 7 -141.7 11982  -24105.8  51.56 18 <0.001
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Figure 23: Proportion of variance in BMI and depression symptoms due to ACE
components (Bivariate)
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Figure 24: Proportion of variance in BMI and impulsivity symptoms due to ADE
components (Bivariate)
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Figure 25: Proportion of variance in depression symptoms and impulsivity due to ADE
components (Bivariate)
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Figure 26: Trivariate independent pathway sex limitation model
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Figure 27: Best fitting model
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Figure 28: Proportion of variance in BMI accounted for by ADE components (Trivariate)
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Figure 29: Proportion of variance in depression symptoms accounted for by ADE
components (Trivariate)
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Figure 30: Proportion of variance in impulsivity symptoms accounted for by ADE
components (Trivariate)
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Chapter 8: Evidence of shared genetic risk between body
composition and smoking behaviors

Adapted from:

1) On the genetic and environmental relationship of body mass index, smoking initiation
and nicotine dependence in a population-based sample of twins. Roseann E. Peterson,
Lindon J. Eaves, Hermine H. Maes. Presentation. XIX World Congress of Psychiatric
Genetics, September 13th, 2011. Washington, D.C., USA.

2) Evidence of Shared Polygenic Risk Among Smoking Behaviors and Body Composition.
Roseann E. Peterson, Xiangning (Sam) Chen, Jingchun Chen, Bradley T. Webb, Hermine
H. Maes. Presentation. 4™ International Conference on Quantitative Genetics, June 21,
2012. Edinburgh, Scotland, UK.

ABSTRACT

Obesity and nicotine dependence (ND) are complex, heterogeneous diseases, which pose
a significant burden to public health, affecting 33 and 20 percent of Americans,
respectively. Cross-sectional studies of ND are generally supportive of a negative
relationship between smoking and body mass index (BMI), but a positive association is
supported by the observation that within smoking cohorts, heavy smokers tend to be of
increased body weight compared to light smokers. Genetic factors have consistently been
demonstrated to influence individual differences in body mass index (BMI) and nicotine
dependence (ND), with twin and family studies estimating heritabilities in the order of
0.70 and 0.60 respectively. A growing body of evidence demonstrates the utility of
genome-wide association studies (GWAS) for identifying single nucleotide
polymorphisms (SNP) that contribute to disease risk. The GWAS approach has been
applied to BMI and smoking behaviors (SB) using sample sizes in the tens of thousands,
yielding several putative risk variants of small effects on individual traits. However, most
studies do not examine common versus specific genetic effects, despite many complex
traits demonstrating comorbidity. Moreover, without consideration of genetically-
correlated traits, the power of genome-wide studies of complex disease to detect
etiologically relevant variation may be limited. Therefore, the purpose of this study was
to investigate whether genetic variants affecting BMI or SB were common to multiple
behaviors or were trait-specific. In total, 75 BMI and 54 SB associated SNPs were
catalogued from large-scale GWAS meta-analyses and tested for association in n=2,802
(41% African-American) older adults (68-80 years old) from the Health Aging and Body
Composition study (Heath ABC). Results indicated current smokers had significantly
lower BMI and abdominal visceral fat than never or former smokers in both sexes. We
observed three BMI-associated SNPs also nominally associated with smoking traits:
rs1900273 in STK33, 1s2145270 near BMP2 and rs12127438 in the 1q42.2 locus.
Additionally, three SB-associated SNPs were found to be nominally associated with body
composition variables: rs11072774 in CHRNB4, 1s2640732 in SCARA3 and 1rs6945244 in
PDEIC. These findings are suggestive of partially shared genetic risk between smoking
and body composition. Future research should confirm these associations and address
putative mechanisms underlying this overlapping genetic architecture.
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INTRODUCTION

Obesity and nicotine dependence (ND) represent complex heterogeneous diseases
affecting 33 and 20 percent of Americans, respectively (106, 127, 129). Both are
associated with numerous medical conditions including cancer, cardiovascular disease
and major depressive disorder (12, 127, 128, 366, 367). Phenotypic associations between
smoking and body composition suggest a complex relationship and the causes of these
associations remain incompletely understood. Cross-sectional studies of smoking
behavior are typically supportive of a negative relationship between current smoking and
body mass index (BMI) (109-111) which may be due in part to effects of nicotine on
energy homeostasis including a reduction of energy intake (112-116) and enhanced
capacity for energy expenditure (113, 368-370). Furthermore, the metabolic effects of
nicotine might partially explain why smoking cessation is often followed by weight-gain
(113, 117, 118). In contrast, however, a positive association is supported by the
observation that within smoking cohorts, heavy smokers tend to be of increased body
weight compared to light smokers (119-121). This may reflect a clustering of risky
behaviors in addition to smoking- increased alcohol consumption, poor diet and reduced
physical activity (371-374). Additionally, smoking has been associated with
accumulation of visceral fat and increased waist circumference (122-124), which may be
the result of nicotine’s effects on sex hormones (375, 376) and cortisol levels (377, 378).
For these reasons, the elucidation of the genetic and environmental mechanisms
underlying these associations remains an important public health endeavor.

Genetic factors have consistently been demonstrated to influence individual
differences in BMI and smoking behaviors (SB). Although an increase in energy intake
coupled with reduced physical activity contributes to increases in adiposity, findings from
twin and family studies have estimated large heritabilities on the order 0.70 for relative
body weight (35, 36). Similarly, twin and family studies have estimated heritabilities in
the order of 0.50-0.70 for smoking initiation and 0.60 for ND (379-383). To date, there
have been no published multivariate twin and family studies on the genetic and
environmental architecture of relative body weight and smoking behavior. However, our
group has examined the possibility of shared genetic and environmental liability between
BMI, smoking initiation and ND in a population-based sample of adult twins from the
Virginia 30,000 study (n=14,177, 63.9% female). Preliminary results of fitting trivariate
modified causal-contingent-common pathway models, which account for the contingency
of ND on smoking initiation, found 1-5% of the variance in smoking initiation and
nicotine dependence to be accounted for by genetic factors in common with BMI
(Peterson et al., in preparation). Preliminary results are presented in SUPPLEMENTAL
MATERIAL section of this chapter.

Genome-wide association studies (GWAS) have successfully identified
polymorphisms that contribute to disease risk for numerous complex traits and diseases
(72). As applied to BMI and smoking behaviors (SB), GWAS have yielded several
putative risk variants of small effects on individual traits using sample sizes in the tens of
thousands. The first common single nucleotide polymorphisms (SNPs) associated with
BMI and common obesity were in the fat mass and obesity-associated (FTO) gene and
near melanocortin 4 receptor (MC4R) and have since been widely replicated (66, 130-
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135). Additionally, two large-scale BMI meta-analyses by Thorleifsson et al. (2009) and
Willer et al. (2009) yielded 13 genetic loci reaching genome-wide significance, including
the previously implicated variants in and near F70 and MC4R. A recent mega-analysis,
performed on 249,796 individuals from 46 studies has confirmed 32 BMI-associated
SNPs. Although highly significant, the identified genetic variants had modest effects,
corresponding to a 0.06-0.4 kg/m? change in BMI per allele, and modest odds ratios for
obesity (BMI>30 kg/m?) ranging between 1.03 and 1.3.

Similarly, large-scale GWAS for smoking traits have yielded putative risk
variants of individually small effect. Three large meta-analyses of smoking initiation,
consumption and cessation from Oxford-GlaxoSmithKline (Ox-GSK), the Tobacco and
Genetics Consortium (TAG) and ENGAGE consortia were published as a series that
included a combined analysis of over 140,000 individuals of European descent from 45
studies (384-386). Findings from these studies revealed one region associated with
smoking initiation on 11p14.1, which includes the brain-derived neurotrophic factor
(BDNF) (385). Additionally, the combined analysis of all three studies yielded five loci
associated with smoking quantity, including the previously identified 1525 locus which
harbors three genes encoding neuronal nicotinic acetylcholine receptor subunits
(NAChR), CHRNAS5, CHRNA3 and CHRNA4 (384-386); a second locus encoding
NAChHRs on 8p11 in and near CHRNB3 and CHRNAG6 (386); variants on 19q13 in and
near CYP2A6 and CYP2B6 that code nicotine metabolizing enzymes (385, 386); SNPs on
7p14 in an intergenic region and variants on 10g25 in LOC100188997, a gene for non-
coding RNA (385). A single variant near the DBH locus (9q34) was found to be
associated with smoking cessation; this gene encodes dopamine B-hydroxylase, which
catalyzes the conversion of dopamine to norepinephrine. As in the aforementioned
studies of body composition, smoking variants were highly significant but had modest
effect on behavior, with odds ratios ranging from 1.06 to 1.12 (384-386).

The causes of the observed associations between body composition and smoking
behavior remain incompletely understood. It is possible that these traits share a common
liability influenced by genetic and environmental factors. For example, genetic variants
in BDNF have been associated with increased body mass and also with smoking initiation
(63-65, 385). However, despite many complex traits demonstrating comorbidity, most
studies do not examine common versus specific effects. Therefore, the purpose of this
study was to investigate whether genetic variants affecting BMI or smoking behavior
were common to multiple behaviors or were trait specific in n=2,802 (41% African-
American) older community-dwelling adults (68-80 years old) from the Health Aging
and Body Composition study (Health ABC). To the best of our knowledge, this is the
first study to test BMI and SB variants in the same cohort across multiple traits.
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METHODS
Participants

Participants were from the Health ABC study, a prospective community based sample of
body composition changes over time in elderly American adults. Participants were
recruited from 1997-1998 from Pittsburgh, PA, and Memphis, TN metropolitan area
residents who were Medicare eligible and between the ages of 69 and 80 years old.
Participants were excluded if they reported difficulty walking a quarter of a mile or
climbing 10 stairs without resting. All participants gave written informed consent and
both study sites approved the protocol. There were 1663 white and 1139 black
participants included in the present study.

Phenotypes

BMI was calculated from laboratory measured height and weight during initial
evaluation. To test various BMI thresholds, BMI was partitioned into clinical categories
with BMI ranges of underweight <18, normal 18-25, overweight 25-30 and obese 30+
kg/m?. Physical activity (PhyAct) was estimated from a structured interview of 27
questions and summarized as kcal/kg/week. Computerized tomography was used to
determine abdominal visceral adiposity density (AbVFat). Smoking habits and race were
self-reported via telephone interview. Smoking status (smoke) was defined as never,
current or former smoker. Smoking status was further partitioned into ever smoker
(EvSmo), former versus current smoker (cessation) and current smoker (CurSmo).
Smoking duration was measured as pack years (PkYrs) and was calculated as the number
of packs of cigarettes smoked per day multiplied by years as a smoker.

Genotyping

Genotyping in the Health ABC was performed by the Center for Inherited Disease
Research using the Illumina Human 1M-Duo BeadChip system. Analysis was restricted
to SNPs with minor allele frequency greater than or equal to 1%, call rate greater than or
equal to 98% and Hardy-Weinberg Equilibrium p-value greater than 10”. There were 8
samples removed for genotypic sex mismatch.

Selection of SNPs

Preliminary SNP selection identified 78 variants meeting criteria for genome-wide or
suggestive significance in either of two large meta-analyses of BMI; 43 from
Thorleifsson et al. (2009) and 35 from Willer et al. (64, 65). Thorleifsson and colleagues
report genome-wide significant (p < 1.67) associations with 29 SNPs in 11 chromosomal
regions, using a discovery sample of n=34,416 and replication sample of n=5,586. The
Willer et al. meta-analysis detected 8 genome-wide significant (p<5.0"*) SNPs in first-
and second-stage samples of n=32,387 and n=54,316, respectively. The only variants
found to be genome-wide significant in both meta-analyses were in and near F70 and
MC4R. The remaining genetic loci were suggestive in the opposing meta-analyses
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(p<0.05), except rs7138803 on 12q13 (p=0.14). Significance level for one SNP,
rs10938397 on 4p12, could not be compared between meta-analyses because there was
no corresponding proxy SNP. Of the 78 BMI variants catalogued, 57 had matching SNPs
on the I[llumina Human 1M-Duo array. For the 20 SNPs not present, proxies (16 with
1>>0.8; 2 with r*>0.7) were identified using SNP Annotation and Proxy Search (SNAP)
V2.1 (147). Following removal of 2 variants from Willer ef al. for which no proxies
were available (1*>0.7), a total of 75 SNPs remained.

SNP selection for smoking traits were catalogued from three large meta-analyses
on smoking initiation, consumption and cessation from Ox-GSK, TAG and ENGAGE
consortia which included a combined analysis of over 140,000 individuals from 45
studies (384-386). There were 510 SNPs reported in Ox-GSK associated with EvSmo,
smoking quantity and cessation of which 157 remained significant (p<107) in the
combined sample with TAG and ENGAGE. The TAG consortium reported 5 SNPs
associated with consumption, 8 with EvSmo and 1 with cessation (p<10®) in the
combined sample. There were 921 SNPs reported by ENGAGE associated (p<0.05) with
cigarette consumption and EvSmo of which 437 remained significant (p<10) in the
combined sample with TAG and Ox-GSK. There were a total of 595 SNPs catalogued
from the three large meta-analyses that were significant at the p<10~ level in the
combined analysis of which 179 appeared on the Health ABC Illumina Human 1M-Duo
array. HapMap phase 2 (CEU, release 23, 90 individuals, 3.96 million SNPs) was used to
determine independence of the 595 SNPs catalogued (70). SNP pruning at 0.7 level
indicated 69 independent SNPs of which 54 appeared on the Health ABC Illumina
Human 1M-Duo array. There were 15 SNPs catalogued from Ox-GSK from fine
mapping of the 15925 locus that did not have corresponding proxies on the Illumina
array.

Haploview version 4.10 was used to determine phase and corresponding proxy
alleles (148, 149). In order to avoid bias due to correlated effects, SNP pruning (r*>0.7)
was performed using PLINK v. 1.07p (150). In summary, there were 75 BMI and 54 SB
SNPs used for association in this study. Although our SNP selection threshold was
more liberal than the traditional genome-wide significance threshold, it was more
conservative than other models of complex disease risk prediction (151, 152).

Association Analyses

Linear and logistic regression was used to incorporate effects of covariates on outcome
variables of body composition and smoking traits. Given there are phenotypic and SNP
allele frequency differences found in European and African ancestries, analyses were run
separately for self-identified race, white and black. To reduce spurious associations due
to population stratification, principal component (PC) scores reflecting ancestral
population sub-structure of each subject were computed (192, 387, 388). Eigensoft (192,
193) was used to generate 10 PCs from 336,680 independent SNPs (linkage
disequilibrium <0.5) in the European-American and 578,446 SNPs in the African-
American sample. There were 12 participants removed from analyses due to outlying PC
scores. PCs 1, 2 and 5 were associated with study variables and were therefore included
as covariates in subsequent regression analyses along with gender and age. PLINK v.
1.07p was used for association and meta-analyses (150).
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RESULTS
Phenotypic

Descriptive statistics for study variables are presented in Table 45. Analysis of variance
indicated that males had significantly greater AbVFat (F(1,2694)=88.88, p=8.71x10%")
and longer duration of tobacco exposure as assessed by PkYrs (F(1,2758)=185.22,
p=7.11x10™*") than females. There were no statistical differences on PhyAct by gender.
Pearson’s Chi-Square and subsequent post hoc analyses indicated that males were more
likely to be former smokers and females more likely to have never smoked (chi-
squ=236.5, p=4.0x10™?). Additionally, females were more likely to be obese (chi-
squ=24.2, p=8.2x107"). As depicted in Figure 31, current smokers had significantly lower
BMI than never or former smokers in males (F(2,1362)=18.9, p=7.83x10") and in
females (F(2,1430)=13.15, p=2.17x107°). Similarly, current smokers had significantly
lower AbVFat than never or former smokers in males (F(2,1309)=20.60, p=1.54x10"")
and females (F(2,1377)=10.01, p=4.8x10”)(Figure 32). As shown in Figure 33, there
were no significant differences in PkYrs across BMI categories in males
(F(3,1342)=1.45, p=0.330). However, in females the underweight group had significantly
greater PkYrs than the normal, overweight and obese groups (F(3,1410)=5.75, p=0.001).

BMI SNPs

Among genetic variants previously implicated in BMI, 23 were associated (p<0.05) with
either BMI, AbVFat, BMICat or obesity (Table 48). Twelve of which were in the same
direction for both racial groups. Table 46 lists association results suggestive for multiple
traits. There were three BMI SNPs nominally associated with both body composition
variables and smoking traits. The top associated SNP was rs1900273 on chromosome 11
in STK33 for association with BMI (p=0.001). This SNP was also associated with
AbVFat and PkYTrs in both samples (p<0.023). SNP rs2145270 near BMP2 on
chromosome 20 was associated with obesity (p=0.014), smoking status (p=0.007) and
EvSmo (p=0.016). Finally, rs12127438 in the 1q42.2 locus was associated with BMI and
BMICat in both ethnicity-based cohorts (p<0.033) and PkYTrs in the European-American
group (p=0.036).

Smoking SNPs

Among genetic variants previously implicated in SB, 13 were associated (p<0.05) with
either Smoke, PkYrs, EvSmo, cessation or CurSmo (Table 49). Seven of which were in
the same direction for both racial groups. The top associated SB SNP was rs9633423 on
chromosome 1 with smoking cessation (p=0.008). Table 47 lists association results
suggestive in multiple traits for previously implicated SB SNPs. There were three SB
SNPs associated with both body composition variables and smoking traits. SNP
rs11072774 on chromosome 15 in CHRNB4 was associated with BMI (p=0.037), obesity
(p=0.003) and CurSmo(p=0.020) in both racial groups. In the white group, rs2640732 on
chromosome 8 in SCARA3 was significantly associated with cessation, CurSmo and
obesity (p<0.033). SNP 156945244 on chromosome 7 in PDE1C was associated with
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Smoke, EvSmo and PhyAct in both groups and additionally with obesity in the white
group (p<0.037).

DISCUSSION

The purpose of this work was to examine phenotypic associations between body
composition and smoking behavior in an elderly cohort and to test if genetic variants
shown previously to be associated with either body composition or smoking behavior
were associated with multiple traits in the Health ABC study. Since studies report
significant phenotypic associations between body composition and smoking behavior, the
work presented here investigated whether the association of these traits was due in part to
shared genetic liability. Phenotypic results from the Health ABC study indicated there
were body composition differences between smoking status groups. Specifically, current
smokers tended to have lower BMI and abdominal visceral fat than former or non-
smokers. These results are in agreement with other cross-sectional studies of smoking
behavior, which are supportive of lower body weight in smokers (109-111).

To examine shared genetic liability, 75 BMI and 54 SB variants catalogued from
large-scale GWAS meta-analyses were tested for association with body composition and
smoking behavior variables. Among genetic variants previously implicated in BMI, 23
were nominally associated (p<0.05) in this sample with BMI, abdominal visceral fat or
obesity in the expected direction, which included SNPs in or near F'70 and MC4R.
Among these, there were three variants that were also nominally associated with smoking
traits in the Health ABC study. The first SNP was in the 1g42.2 locus between the
TSNAX and DISC1 genes and was negatively associated with BMI and pack years. This
suggests that a BMI-decreasing allele is also associated with decreased smoking duration.
However, a SNP in the STK33 gene (11p15.4), was found to be negatively associated
with abdominal visceral fat and BMI but positively associated with pack years,
suggesting that this allele is associated with lower body weight but with increased
smoking duration. A third variant, on chromosome 20p12.3, was associated with a
decrease in obesity but an increase in ever smoking with the closest gene bone
morphogenetic protein 2 (BMP2).

Among genetic variants previously implicated in smoking behavior, 13 were
nominally associated (p<0.05) with smoking variables in the Health ABC study. Of these,
three were also nominally associated with body composition variables. The first variant,
on chromosome 7 located within the gene PDEIC, was associated with never smoking,
decreased obesity and increase in physical activity. A second SNP, on chromosome 8 in
the gene SCARA3, was associated with cessation, non-smoking and an increase in
obesity. The third variant, located at the 15q25 locus, resides near a cluster of genes
encoding nicotinic acetylcholine receptors and found to be associated with increased BMI
and obesity, as well as with former and non-smoking. The genetic associations found in
the Health ABC study reflect the complex phenotypic associations found between these
traits. Although SNPs in and near BDNF were previously associated with body
composition and smoking behaviors (64, 65, 385), there was no evidence of association
in the Health ABC sample. However, despite their preliminary nature, these results merit
future research and, in particular, follow-up in additional replication cohorts.
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It is important to consider that genetic variants selected for association in this
study, although significant in the meta-analyses from which they were catalogued,
demonstrated relatively modest effects on their respective traits. As a result, replication
attempts will have limited power to achieve genome-wide significance (125). Issues
related to multiple testing further complicate this. The likelihood of observing a false
positive finding increases with the number of tests performed and significance values
reported here were not corrected for multiple testing. However, the results from Health
ABC are preliminary, and several additional studies will be incorporated into the final
analyses, with significance evaluated by appropriate measures including Bonferroni
correction and empirical significance derived by permutation procedures.

Interpretation of these results should consider several limitations. First, this study
was conducted using a selected sample. That is, participants were eligible if they were
both elderly and in relatively good physical health. It is possible that this ascertainment
strategy influenced the results and limits the ability to generalize the findings across the
lifespan. Additionally, sex differences on the genetic analyses of these traits were not
assessed. Further studies are warranted to determine effects of age and gender on the
genetics of body composition, smoking behaviors and the causes of correlation between
these traits.

Preliminary results were suggestive of partially shared genetic risk between
smoking and body composition. Without consideration of genetically-correlated traits,
genome-wide studies of complex disease may be limited in their power to detect
etiologically relevant variation. Future research needs to address mechanisms underlying
the associations between these traits and moderating effects of the environment to aid
both obesity and nicotine dependence prevention and treatment efforts.
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TABLES AND FIGURES

Figure 31: BMI by smoking status in males and females from the HABC study
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Note: BMI = body mass index, kg = kilograms, m = meter.
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Figure 32: Mean abdominal visceral fat density by smoking status in males and females
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Figure 33: Mean pack years by BMI category in males and females
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Table 45: Descriptive statistics for HABC study variables by gender

Overall Males Females

N 2802 1367 1435
(%) (48.8%) (51.2%)
Race

White 1663 879 784

Black 1139 488 651
Age (yrs) mean 73.6 73.8 73.5
BMI (kg/m2) mean 27.4 27.1 27.7
AbVFat mean 144 156.3 132.3
PhyAct (kcal/kg/wk) mean 82.8 81.7 83.9
Obese N 715 292 423

(%) (25.5%)
Smoke N

Never 1206 393 813

(%) (43%)

Current 293 150 143

(%) (10.5%)

Former 1299 822 477

(%) (46.4%)
Pack Years mean 19.2 26.5 12.4
(median) 4 17 0

Note: BMI = body mass index, kg = kilograms, m = meter, kcal = kilocalories, wk =
week, AbVFat = abdominal visceral fat, PhyAct = physical activity.
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Table 46: Association results for SNPs previously implicated in BMI suggestive for
multiple traits

White Black Meta-Analysis
Chr SNP A1 Trait B/OR SE P B/OR SE P B/OR P
1 rs12127438 G BMI -0.034 0.02 0.160 -0.048 0.03 0.101 -0.040 0.033

BMICat -0.056 0.03 0.033 -0.030 0.04 0.460 -0.048 0.029
PkYrs -0.051 0.02 0.036 0.046 0.03 0.112 -0.004 0.942

11 rs1900273 C AbVFat -0.041  0.02 0.091 -0.052 0.03 0.088 -0.045 0.017
BMI -0.057 0.02 0.020 -0.062 0.03 0.031 -0.059 0.001

BMICat -0.038 0.02 0.120 -0.066 0.03 0.056 -0.048 0.017

PkYrs 0.056 0.02 0.021 0.023 0.03 0.425 0.043 0.023

20  rs2145270 C EvSmo 1.171 0.08 0.038 1.121 0.09 0.201 1.150 0.016
Obesity 0.851 0.09 0.085 0.852 0.09 0.080 0.851 0.014

Table 47: Association results for SNPs previously implicated in smoking behaviors
suggestive for multiple traits

White Black Meta-Analysis
Chr SNP A1 Trait B/OR SE P B/OR SE P B/OR P

7 rs6945244 T EvSmo  0.882 0.08 0.094 0.883 0.10 0.191 0.882 0.034
Obesity  0.821 0.09 0.033 0986 0.10 0.885 0.897 0.238
PhyAct  0.024 0.02 0.323 0.062 0.03 0.037 0.040 0.037

8 rs2640732 G  Cessation 0.714 0.16 0.033 1.306 0.15 0.080 0.967 0.911
CurSmo 0.716 0.15 0.028 1.216 0.14 0.155 0.937 0.805
Obesity  1.228 0.09 0.025 0.930 0.11 0.516  1.077 0.595

15 rs11072774 T BMI 0.024 0.02 0.315 0.059 0.03 0.041 0.039 0.037
Cessation  0.589 0.22 0.018 0.870 0.18 0.426 0.733 0.109
CurSmo  0.641 0.22 0.041 0.799 0.16 0.168 0.739 0.020
Obesity  1.207 0.12 0.102 1.353 0.12 0.011 1.276 0.003

Note: Chr = chromosome, A1 = allele tested, B = beta estimate for linear regression, OR
= odds ratio for logistic regression, SE = standard error of the estimate, SNP = single
nucleotide polymorphism, BMI = body mass index, AbVFat = abdominal visceral fat,
PhyAct = physical activity, BMICat = clinical BMI category (under, normal, overweight,
obese), Smoke = smoking status (never, current, former), PkYrs = pack years, EvSmo =
ever vs never smoked, Cessation = former vs current smoker, CurSmo = current smoker.
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Table 48: Association results for SNPs previously implicated in BMI

White Black Meta-Analysis
Chr SNP A1 Trait B/OR SE P B/OR SE P B/OR P
1 rs3766431 T AbVFat 0.017 0.02 0477 -0.062 0.03 0.040 -0.020 0.608
1 rs9424977 C PhyAct 0.018 0.02 0458 0.077 0.03 0.010 -0.028 0.559
1 rs3101336 A Cessation 0.718 0.17 0.045 0.971 0.12 0.811 0.851 0.281

CurSmo 0.713 0.16 0.033 0.969 0.11 0.783 0.848 0.277
PhyAct 0.036 0.03 0.153 -0.062 0.03 0.037 -0.012 0.810
1 rs2568958 G Cessaton 0715 0.17 0.043 0970 0.12 0.808 0.849 0.281
CurSmo 0.711 0.16 0.032 0.969 0.11 0.786 0.847 0.279
PhyAct 0.035 0.02 0.159 -0.062 0.03 0.037 -0.012 0.804
1 rs2815752 C Cessaton 0.716 0.17 0.044 0970 0.12 0.808 0.850 0.281
CurSmo 0.711 0.16 0.032 0.969 0.11 0.786 0.847 0.279
PhyAct 0.036 0.02 0.153 -0.062 0.03 0.037 -0.012 0.810

1 rs1973993 T AbVFat -0.047 0.02 0.053 0.063 0.03 0.041 -0.053 0.005
1 rs10783050 C AbVFat 0.071 0.02 0.003 0.015 0.03 0.635 0.047 0.097
BMI 0.055 0.02 0.024 0.014 0.03 0.642 0.038 0.060

1 rs10913469 C BMI 0.049 0.02 0.045 -0.013 0.03 0.648 0.020 0.523
1 rs12127438 G BMI -0.034 0.02 0.160 -0.048 0.03 0.101 -0.040 0.033
BMICat -0.056  0.03 0.033 -0.030 0.04 0.460 -0.048 0.029

PkYrs -0.051 0.02 0.036 0.046 0.03 0.112 -0.004 0.942

2 rs2867125 A AbVFat 0.000 0.02 0.993 0.066 0.03 0.029 0.031 0.349
Obesity 0.716  0.13 0.009 1.093 0.14 0.520 0.882 0.552

PhyAct -0.043 0.02 0.082 0.079 0.03 0.008 0.017 0.785

2 rs4854344 G Obesity 0.716 0.13 0.010 0970 0.11 0.774 0.840 0.249
PhyAct -0.042 0.02 0.089 0.087 0.03 0.004 0.021 0.743

2 rs7561317 A Obesity 0.715 0.13 0.009 1.004 0.10 0.973 0.854 0.353
PhyAct -0.044 0.02 0.080 0.091 0.03 0.002 0.023 0.738

2 rs10206343 C BMI -0.056  0.02 0.020 -0.009 0.03 0.763 -0.035 0.139
3 rs7647305 T BMI -0.034 0.02 0.159 -0.053 0.03 0.066 -0.042 0.024
BMICat -0.024 0.03 0426 -0.078 0.03 0.024 -0.049 0.065

5 rs467650 C Obesity 0.971 0.09 0.755 0.807 0.09 0.020 0.884 0.182
6 rs1524097 C EvSmo 0.708 0.11 0.002 0.894 0.12 0.366 0.790 0.042
PkYrs -0.051 0.02 0.035 0.016 0.03 0.586 -0.020 0.559

Smoke -0.154 0.05 0.001 -0.057 0.05 0.283 -0.109  0.026

7 rs7810507 A AbVFat 0.044 0.02 0.068 0.055 0.03 0.071 0.048 0.011

PkYrs 0.003 0.02 0.896 0.092 0.03 0.002 0.046 0.298

8 rs17069257 C BMI 0.053 0.02 0.029 -0.018 0.03 0.542 0.019 0.582
BMICat 0.069 0.03 0.039 -0.043 0.04 0.289 0.015 0.785
Cessation 0.718 0.22 0.133 1440 0.15 0.015 1.036 0.918
Smoke -0.014 0.04 0.738 -0.095 0.05 0.040 -0.053 0.189
EvSmo 1.234 0.08 0.008 1.040 0.12 0.743 1.161 0.069
Smoke 0.082 0.03 0.015 0.020 0.05 0.696 0.063 0.025
Cessation 0.762 0.22 0211 1378 0.13 0.016 1.051 0.868
Smoke -0.047 0.04 0.268 -0.078 0.04 0.056 -0.063  0.032
BMICat 0.079  0.03 0.023 -0.006 0.08 0.939 0.066 0.038
Obesity 1405 012 0.004 0985 0.23 0.946 1.239 0.207
AbVFat -0.041  0.02 0.091 -0.052 0.03 0.088 -0.045 0.017
BMI -0.057 0.02 0.020 -0.062 0.03 0.031 -0.059 0.001
BMICat -0.038 0.02 0.120 -0.066 0.03 0.056 -0.048 0.017

9 rs4742700

9 rs867559

10  rs11255232

o o o >r

11 rs1900273

156

www.manaraa.com



PkYrs 0.056 0.02 0.021 0.023 0.03 0425 0.043 0.023
11 rs7481311 T AbVFat -0.020 0.02 0.424 -0.086 0.03 0.005 -0.051 0.126
11 rs10835211 A PkYrs -0.007 0.02 0.793 -0.059 0.03 0.043 -0.030 0.243
11 rs4752856 A Cessation 1.409 0.15 0.027 0.711 0.22 0.126 1.020 0.955
Obesity 1.173 0.09 0.089 0.731 0.16 0.049 0.942 0.800
12 rs7138803 A BMI -0.027 0.02 0.264 0.068 0.03 0.018 0.019 0.685
13 rs7336332 G  Cessation 0.893 0.23 0630 1377 014 0.018 1.157 0.493
CurSmo 0.827 0.23 0414 1.281 0.12 0.046 1.076 0.734
15 rs12324805 C AbVFat -0.057 0.02 0.018 0.032 0.083 0.300 -0.015 0.739
PhyAct 0.067 0.02 0.007 0.004 0.03 0.903 0.038 0.234
15 rs8024593 G PhyAct -0.051 0.02 0.040 0.022 0.03 0477 -0.039 0.040
16 rs6499640 G BMICat -0.010 0.02 0.699 -0.069 0.03 0.046 -0.034 0.239
16 rs8050136 A BMI 0.058 0.02 0.017 -0.030 0.08 0.291 0.015 0.730
BMICat 0.065 0.03 0.010 -0.016 0.03 0.642 0.028 0.490
Obesity 1.232 0.09 0.023 0910 0.09 0.303 1.059 0.707
16 rs3751812 T BMI 0.055 0.02 0.025 -0.036 0.03 0.219 0.011 0.813
BMICat 0.062 0.03 0.016 -0.041 0.06 0476 0.023 0.640
Obesity 1.229 0.09 0.025 0.744 0.16 0.069 0.974 0.915
16 rs11075989 T BMI 0.057 0.02 0.020 -0.012 0.03 0.682 0.024 0.480
BMICat 0.063 0.03 0.014 0.003 0.03 0.934 0.037 0.217
Obesity 1.229 0.09 0.025 0949 0.09 0.566 1.080 0.553
16 rs7190492 A BMI -0.054 0.02 0.029 0.035 0.03 0.225 -0.011 0.812
16 rs8044769 T BMI -0.048 0.02 0.048 0.034 0.03 0.244 -0.009 0.834
BMICat -0.052 0.03 0.040 0.050 0.04 0.189 -0.005 0.927
18 rs10871777 G BMI 0.041 0.02 0.092 0.045 0.03 0.118 0.043 0.022
PhyAct 0.056 0.02 0.024 -0.021 0.083 0477 0.019 0.619
18 rs12970134 A BMI 0.049 0.02 0.044 0.052 0.08 0.071 0.050 0.007
20 rs2145270 C EvSmo 1.171 0.08 0.038 1.121 0.09 0.201 1.150 0.016
Obesity 0.851 0.09 0.085 0.852 0.09 0.080 0.851 0.014
Smoke 0.071 0.03 0.030 0.061 0.04 0.108 0.067 0.007
22 rs4823535 A PhyAct -0.019 0.02 0439 0.085 0.03 0.004 0.032 0.544
Note: Chr = chromosome, A1 = allele tested, B = beta estimate for liner regression, OR =
odds ratio for logistic regression, SE = standard error of the estimate, SNP = single
nucleotide polymorphism, BMI = body mass index, AbVFat = abdominal visceral fat,
PhyAct = physical activity, BMICat = clinical BMI category (under, normal, overweight,
obese), Smoke = smoking status (never, current, former), EvSmo = ever smoked,
Cessation = former vs current smoker, CurSmo = current smoker.
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Table 49: Association results for SNPs previously implicated in smoking behaviors

White Black Meta-Analysis

Chr SNP A1 Trait B/OR SE P B/OR SE P B/OR P

1 rs839758 G BMI -0.011  0.02 0.659 0.061 0.03 0.035 0.023 0.514
BMICat 0.005 0.02 0.839 0.071 0.03 0.029 0.035 0.289

Obesity 1.002 0.09 0980 1.268 0.09 0.008 1.128 0.307

1 rs2782641 G Cessaton 1.078 0.15 0.626 0.748 0.13 0.031 0.891 0.529
rs10888740 A PkYrs -0.012 0.02 0.617 -0.059 0.03 0.044 -0.033 0.159
rs9633423 T Cessaton 1.299 0.16 0.092 1.340 0.14 0.043 1.321 0.009
CurSmo 1.283 015 0.096 1.194 0.13 0.161 1.230 0.032

PhyAct -0.018 0.02 0.471 0.067 0.03 0.025 0.023 0.589

1 rs6683734 A AbVFat -0.015 0.02 0.536 0.074 0.03 0.016 -0.042 0.156
PhyAct -0.049 0.02 0.047 0.033 0.083 0.276 -0.010 0.807

rs16824949 G PkYrs 0.036 0.02 0.143 -0.067 0.03 0.025 -0.014 0.782
rs6945244 T EvSmo 0.882 0.08 0.094 0883 010 0.191 0.882 0.034
Obesity 0.821 0.09 0.033 098 010 0.885 0.897 0.238

PhyAct 0.024 0.02 0.323 0.062 0.03 0.037 0.040 0.037

Smoke -0.057 0.03 0.079 -0.075 0.04 0.065 -0.064 0.011

_

~N N

7 rs6948856 A Obesity 0.761 0.11 0.012 1.086 0.09 0.384 0913 0.608
8 rs2640732 G Cessaton 0.714 0.16 0.033 1.306 0.15 0.080 0.967 0.911
CurSmo 0.716 015 0.028 1.216 0.14 0.155 0.937 0.805

Obesity 1.228 0.09 0.025 0.930 0.11 0.516 1.077 0.595

15  rs2656069 G AbVFat 0.011 0.02 0.653 -0.075 0.03 0.013 -0.030 0.482
PhyAct 0.052 0.02 0.037 0.030 0.03 0.313 0.043 0.024

15 rs3885951 C BMICat 0.082 0.04 0.042 -0.204 0.12 0.079 -0.040 0.776
Obesity 1165 0.14 0316 0.380 0.37 0.009 0.698 0.516

15 rsb78776 T PhyAct 0.052 0.02 0.036 0.018 0.03 0.557 0.038 0.047
15 rs12441998 G Cessaton 0.667 020 0.041 1.228 0.13 0.106 0.922 0.791
PkYrs -0.048 0.02 0.049 -0.012 0.083 0.692 -0.033 0.076

15 rs11072774 T BMI 0.024 0.02 0315 0.059 0.03 0.041 0.039 0.037
Cessation 0589 0.22 0.018 0870 0.18 0426 0.733 0.109

CurSmo 0.641 0.22 0.041 0799 016 0.168 0.739 0.020

Obesity 1.207r 012 0.102 1353 0.12 0.011 1.276 0.003

15 rs17487514 T Obesity 1.021 0.10 0.837 0.657 0.20 0.037 0.848 0.450
15 rs16970006 C BMI 0.018 0.02 0471 0.066 0.03 0.023 0.039 0.102
BMICat 0.040 0.05 0418 0.218 0.10 0.034 0.106 0.217

Cessation 0435 040 0.039 1848 039 0.115 0.900 0.884

CurSmo 0.437 039 0.036 1365 033 0.347 0.788 0.676

Obesity 1.249 017 0191 1.952 0.27 0.014 1.484 0.070

15 rs11072794 T Cessaton 0.652 0.18 0.020 1.364 0.15 0.035 0.951 0.891
CurSmo 0.701 0.18 0.045 1318 0.14 0.044 0971 0.926

15  rs7177699 C  CurSmo 1336 0.14 0.046 1.005 0.16 0.973 1.167 0.278
15 rs4380028 A AbVFat 0.038 0.02 0.113 0.051 0.03 0.099 0.043 0.023
15 rs11072810 T Obesity 0986 0.09 0875 0826 0.09 0.039 0.902 0.243
16 rs802698 A PhyAct -0.063 0.02 0.033 0.017 0.083 0.563 -0.020 0.572
19 rs3889806 A  Cessaton 0.674 0.17 0.021 0.876 0.20 0.500 0.755 0.031

CurSmo 0.717 016 0.039 0926 0.19 0.678 0.801 0.080
PhyAct -0.019 0.02 0.435 -0.072 0.03 0.016 -0.043 0.103
19  rs7251950 T  Cessaton 1.386 0.16 0.038 1.119 0.17 0.520 1.259 0.049
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Figure 34: Daily cigarette consumption by BMI and sex in the VA30k sample
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Figure 35: Smoking history by BMI and sex in the VA30k sample
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Figure 36: Partial modified CCC model path diagram for BMI, smoking initiation and
nicotine dependence
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Figure 37: CCC path estimates for females (VA30k)
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Chapter 9: Global Discussion

Obesity is a serious public health crisis and recent estimates of its incidence are the
highest in United States history, with 35% and 17% of American adults and children
affected, respectively (2). The clinical definition of adult obesity is operationalized as a
body mass index (BMI) greater than 30 kg/m”. Although the prevalence of common
obesity has increased dramatically over the past 30 years—largely thought to be due to
changes in the environment, such as high calorie diets and sedentary lifestyles—twin and
family studies have shown consistently that relative body weight is under considerable
genetic influence in both children and adults, and heritability estimates range from 40%
to 90% (35, 51-54).

Given the large heritability estimates reported for BMI, molecular genetic
approaches represent a useful tool with which to examine underlying mechanisms of and
genetic susceptibility to obesity. To date, a number of approaches have been utilized to
identify BMI/obesity-associated genes including candidate gene, linkage and association
studies. While candidate gene and linkage studies have been useful in detecting genetic
factors of large effect for rare forms of obesity, they have proven relatively unsuccessful
for discovering genes of relatively small effect, such as those thought to underlie genetic
liability to common complex obesity and BMI.

Genome-wide association studies (GWAS) have successfully identified
polymorphisms influencing numerous complex traits and diseases (72). However, this
approach has been met with important limitations. A number of potential factors have
been proposed that may reduce the power of this methodology in general, as well as for
the field of common complex obesity specifically. The survey of limitations presented in
Chapter 1 highlights the following issues: replication of variants with small effects, utility
of risk prediction, generalizability to multiple racial groups and across the lifespan and
affects of comorbidity with other traits and disorders. The research reported herein
attempts to address many of these issues, towards developing improved methods to
delineate the genetics of BMI and common complex obesity, along with the
corresponding associations with depression symptoms and smoking behavior. In the
subsequent discussion, we first summarize key findings from each of the chapters,
discuss limitations of this research and propose extensions for future research.

Research findings

This research integrated clinical, twin, and genetic association studies to further our
understanding of the genetics of BMI and common complex obesity in the context of
genetic risk sum scores (GRSS), clinical risk prediction, development across adolescence
into adulthood, and comorbidity with depression symptoms and smoking behavior. A
summary of the dissertation studies appears in Figure 39. The first three studies (Chapters
2-4) incorporated GRSS methodology, which effectively summarizes the effects of a
number of risk alleles into a composite score. In Chapter 2, the MGS-C sample was used
for proof-of-principle of this methodology, that is, the use of a GRSS as an alternative
form of replication. The MGS-C had limited power to detect the previously BMI-
associated variants individually but in aggregate, as a count score, was found to be highly
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associated with BMI (p-value = 3.19x10°) but explained a limited amount of the variance
(0.66%). However, estimates of the area under receiver operator criteria curve (AUC)
indicated that the GRSS and covariates significantly predicted overweight and obesity
classification with maximum discriminative ability for predicting class III obesity
(AUC=0.697). An additional finding was that the GRSS was associated in both
European- and African-Americans, despite the fact that the BMI-associated variants were
catalogued from meta-analyses of primarily European descent.

In Chapter 3, we extended this GRSS methodology by constructing scores from
proxy versus imputed SNPs and count versus weighted methods. The weighted SNP-
GRSS constructed from imputed probabilities of risk alleles performed best and was
highly associated with BMI (p=4.3x107'%), accounting for 3% of the phenotypic variance.
In addition to BMI-validated SNPs, common and rare BMI/obesity-associated CNV's
were identified from the literature and incorporated into a score in the hopes of increasing
risk prediction. Of the 84 CNVs previously reported, only a 21-kilobase deletion on
16p12.3 demonstrated evidence of association with BMI (p=0.003, frequency=16.9%) in
the SAGE sample, with two CNVs showing nominal association with moderate-obesity,
1p36.1 duplications (OR=3.1, p=0.009, frequency 1.2%) and 5q13.2 deletions (OR=1.5,
p=0.048, frequency 7.7%). The combined model, which included covariates, SNP-GRSS,
and 16p12.3 deletion, accounted for 11.5% of phenotypic variance in BMI (p=3.34x107%)
and AUC estimates significantly predicted obesity classification with maximum
discriminative ability for morbid-obesity (AUC = 0.750). These results illustrate how
prediction algorithms may be improved by incorporating validated effect-sizes and allelic
probabilities. Furthermore, in agreement with Chapter 2, the GRSS was associated in
both European- and African-Americans despite the BMI-associated variants being
catalogued from meta-analyses primarily of European descent.

Because there has been only limited research on when during development BMI-
associated variants begin to influence BMI, we utilize in Chapter 4 the ABD longitudinal
twin study in order to assess the effects of adult-validated BMI-SNPs across adolescence
into adulthood (age 8 to 18). BMI was found to be highly heritable, accounting for 74-
91% of the variance over the course of adolescent development and, furthermore,
modeling indicated multiple genetic factors that contributed to BMI liability, including a
genetic factor that loaded across development, a second common genetic factor that
loaded later in adolescence and time-specific genetic factors important in mid-
adolescence. Additionally, shared environmental effects were found to account for
significant portions of the phenotypic variance (1-18%) for ages 11-16 in females and
ages 8-14 in males. A unique environmental factor accounted for 2-13% of the
phenotypic variance across development. To better understand the importance of adult
BMI-associated genetic variants across adolescent development, we tested a weighted
GRSS as an effect on latent genetic factors as well as on mean BMI. Preliminary results
indicated that the GRSS was best modeled as an effect on mean BMI at each age group,
suggesting association across development with the magnitude of the effect differing at
each time point considered and ranged in effect from 0.05 to 2.4 kg/m” change in BML.
The GRSS accounted for 1-2.3% of the phenotypic variance in BMI across adolescence.
To our knowledge, this is the first study of BMI to incorporate GRSS methodology in the
context of variance decomposition.
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In Chapters 5 through 8, BMI and common complex obesity are approached from
the perspective of comorbidity through phenotypic and genetic associations with binge
eating disorder (BED), depression symptoms and smoking behavior. In Chapters 5 and 6,
we used the UofMN study, a clinical sample of overweight and obese women with and
without BED, to examine the relationship of BED, food intake and internalizing
symptoms of depression and anxiety. In Chapter 5, energy intake and energy expenditure
were assessed by multiple methods to potentially identify differences in food intake,
metabolism and accuracy of self-reported food intake in obese groups with and without
BED. The results indicated no between group differences in total daily energy
expenditure (TDEE), basal metabolic rate (BMR) or thermal effect of food (TEF).
According to dietary recall data, the BED group had significantly higher caloric intake on
binge eating episode days than non-binge days (3255 vs. 2343 kilocalories (kcal)). No
difference was observed between BED non-binge day intake and control group intake
(2233 vs. 2140 kcal). We observed similar results for food log data and laboratory
measured intake. Our data suggest that increased energy intake reported by BED
individuals is due to increased food consumption and, critically, not metabolic
differences. When comparing TDEE to data on dietary recall and food log, both groups
displayed significant underreporting of caloric intake of similar magnitudes ranging 20-
33%. Furthermore, predicted energy requirements estimated via the Harris-Benedict
equation underestimated measured TDEE by 23-24%. These results, taken together,
provide support for under-reporting of food intake by both BED and non-BED obese
groups.

In Chapter 6, we used the UofMN sample to examine models by which BED and
internalizing symptoms of depression and anxiety influence food intake in
overweight/obese women. The BED group was found to endorse significantly more
symptoms of depression (10.1 vs. 4.8, p=0.005) and anxiety (8.5 vs. 2.7, p=0.003). Linear
regression indicated that BED diagnosis and internalizing symptoms accounted for 30%
of the variance in kcal-intake (F(3,28)=4.0, p=0.017). Results from path analysis
suggested that BED mediates the influence of internalizing symptoms on total kcal-intake
(empirical p<0.001). The associations between internalizing symptoms and food intake
are best described as acting indirectly through a BED diagnosis. This suggests that
symptoms of depression and anxiety influence whether an individual engages in binge
eating, which itself influences kcal-intake. Improved understanding of the mechanisms
underlying the associations between mood, binge eating and food intake will facilitate the
development of more effective prevention and treatment strategies for both BED and
obesity.

In Chapters 7 and 8, associations between BMI, depression symptoms and
smoking behavior were examined by two different types of genetically informative
samples: twin studies and GWAS. In Chapter 7, twin study methodology was utilized in
order to investigate whether shared genetic and/or environmental liability is responsible
for phenotypic associations found between BMI, depression symptoms, and impulsivity
in the VA30k sample. A significant quadratic relationship was found between BMI and
depression symptoms, indicating that those individuals with the highest and the lowest
BMI were more likely to endorse higher depression scores. Bivariate twin modeling
results did not indicate a significant genetic or environmental correlation between BMI
and depression symptoms. However, significant genetic and environmental correlations
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were found between BMI and impulsivity (rG =0.115, rE=0.046), as well as a significant
genetic correlation between depression and impulsivity (rG=0.075). Trivariate
independent pathway twin modeling indicated shared genetic and environmental liability
between these traits and a common genetic factor accounting for 2-16% of the genetic
variance in these traits. In females, an environmental factor common to BMI and
impulsivity accounted for 0.5% of the environmental variance in BMI and 62% in
impulsivity. In males, an environmental factor common to depression symptoms and
impulsivity accounted for 0.5% of the environmental variance in depression symptoms
and 56% in impulsivity. Our findings suggested partially shared genetic and
environmental risk between BMI, depression symptoms and impulsivity.

The purpose of Chapter 8 was to investigate whether genetic variants previously
identified to be associated with either BMI or smoking behavior were common to
multiple behaviors or were trait-specific in the HABC study. Phenotypic associations
indicated current smokers had significantly lower BMI and abdominal visceral fat than
“never” or former smokers in both sexes. In total, three BMI-associated SNPs
demonstrated nominally significant associations with smoking traits: rs1900273 in
STK33, 152145270 near BMP2 and rs12127438 at the 1q42.2 locus. Additionally, three
smoking behavior-associated SNPs were found to be nominally associated with body
composition variables: rs11072774 in CHRNB4, 1s2640732 in SCARA3 and 156945244 in
PDEIC. Our preliminary findings are suggestive of partially shared genetic risk between
smoking and body composition in a sample of European- and African-Americans.

Limitations and extensions

The findings reported herein are best interpreted within the context of several limitations.
First, although SNP-GRSSs were significantly associated with BMI, they only accounted
for a limited proportion of the phenotypic variance (0.5-3%) and, accordingly, obesity
risk prediction based on these scores was not found to have clinical utility. Moreover,
while it was hoped that by including an additional class of genetic variants (i.e., CNVs)
we would be able to account for more of the phenotypic variance in BMI, all but three of
the CNVs catalogued from the literature failed to demonstrate evidence of association
with BMI or obesity, even when tested in aggregate. However, as large-scale exome and
genome sequencing initiatives identify lower frequency variants and other types of
variation such as INDELSs, the framework we have provided for integrating common and
rare variation may be applied.

There are potentially several other extensions to GRSS methodology. For
example, the GRSS reported here were constructed from variants that met genome-wide
significance. Alternatively, these scores could be constructed from a wider significance
threshold to determine the probability level that captures maximal predictive ability.
Furthermore, an important extension of an integrated model of BMI and obesity is to
incorporate the moderating effects of the environment. At least two of the BMI-validated
SNPs exhibit gene by environment interactions. Future research should incorporate
environmental variables into models of disease and risk prediction, as consideration of
only genetic effects will surely be of limited potential.

Several of the reported phenotypic associations indicated a significant quadratic
association, including age and BMI. Additionally, a quadratic association was found
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between BMI and depression symptoms. This finding could explain, in part, conflicting
reported findings on the nature of the association of BMI and depression, and further
highlights the importance of addressing the possibility of higher order associations
between variables (i.e., quadratic, cubic). Furthermore, there are known limitations of
structural equation modeling for the handling of nonlinear relationships. Additional
research is needed to determine the effect of curvilinear relationships on variance
decomposition methodology and parameter estimates.

Another limitation of this research was the application of only a few of the
potentially relevant latent variable twin models. Other longitudinal models, which would
be particularly insightful, are simplex and growth curves, as they allow for the
assessment of the contributions of variance components and genetic variants on
innovations, transmissions and rate of change of BMI across time. In addition, since C
and D components cannot me modeled simultaneously in classical twin designs, future
models might utilize the extended twin design to determine the effect of each of these
sources of variance among others such as assortative mating. Of particular interest is the
application of models of comorbidity to potentially determine the direction of effect, as
longitudinal phenotypic studies have found a reciprocal association between obesity and
depression. Future research should apply models of comorbidity and test direction of
causation in genetically informative samples. Our results suggest that there is partially
shared genetic risk between BMI, depression symptoms and impulsivity and BMI and
smoking behavior. More studies are needed to determine how correlated liability affects
gene-finding efforts.

Closing remarks

Given the seriousness of the global obesity epidemic among both children and
adults, research elucidating the genetic and environmental liability to BMI and
development of obesity is essential. It is well recognized that excess body weight is the
result of positive energy balance, that is, excess caloric intake relative to energy
expenditure. Although energy balance appears straightforward, its relationship with
obesity is quite complex and involves the interplay of genetic, environmental, and
psychological determinants. Despite twin and family studies consistently demonstrating
that relative body weight is under considerable genetic influence in both children and
adults, only a limited number of genetic variants have been identified to date and these
account for only a fraction of the heritability. The so-called “missing heritability” has
been speculated to reside in lower frequency and other classes of variants yet to be
elucidated by the holy grail of molecular genetic studies—whole-genome sequencing.
Longitudinal twin studies indicate there are multiple genetic and environmental factors
that persist across time, as well as time-specific factors, that influence relative body
weight. However, most genetic association studies have been performed on cross-
sectional studies ignoring the potential confounders of development. Furthermore, BMI
and obesity are associated and comorbid with multiple traits and diseases, and studies
have demonstrated correlated liability between traits. Nonetheless, most genetic
association studies do not account for effects of correlated liability beyond the use of a
few basic covariates. This next era of gene finding efforts by large-scale sequencing will
certainly identify additional genetic variation and likely shed light on new pathways
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involved in disease etiology. However, to fully understand common complex obesity we
need to move beyond the rather simplistic model of performing linear associations
between genetic variant and “trait” and move towards building integrated models
incorporating development, comorbidity, and, importantly, effects of the environment.

Figure 39: Summary of dissertation studies
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